留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斑岩型矿床容矿裂隙的成矿流体压裂改造及其脉体特点

赵茂春 吴保乾 余海军 何云 唐琼 羊劲松 李佳成 张思山 王光龙

赵茂春, 吴保乾, 余海军, 等, 2020. 斑岩型矿床容矿裂隙的成矿流体压裂改造及其脉体特点. 地质力学学报, 26 (3): 299-315. DOI: 10.12090/j.issn.1006-6616.2020.26.03.028
引用本文: 赵茂春, 吴保乾, 余海军, 等, 2020. 斑岩型矿床容矿裂隙的成矿流体压裂改造及其脉体特点. 地质力学学报, 26 (3): 299-315. DOI: 10.12090/j.issn.1006-6616.2020.26.03.028
ZHAO Maochun, WU Baoqian, YU Haijun, et al., 2020. Ore-forming fluid fracturing treatment of ore-bearing fractures and the characteristics of the related veins in porphyry deposits. Journal of Geomechanics, 26 (3): 299-315. DOI: 10.12090/j.issn.1006-6616.2020.26.03.028
Citation: ZHAO Maochun, WU Baoqian, YU Haijun, et al., 2020. Ore-forming fluid fracturing treatment of ore-bearing fractures and the characteristics of the related veins in porphyry deposits. Journal of Geomechanics, 26 (3): 299-315. DOI: 10.12090/j.issn.1006-6616.2020.26.03.028

斑岩型矿床容矿裂隙的成矿流体压裂改造及其脉体特点

doi: 10.12090/j.issn.1006-6616.2020.26.03.028
基金项目: 

中国地质调查局地质调查项目 12120113094600

云南省基础研究重点项目 2019FA018

云南省石缸河-铁厂锡矿矿集区矿产地质 DD201966-04

云南省石缸河-铁厂锡矿矿集区矿产地质 WKZB2011BJM3001691003

详细信息
    作者简介:

    赵茂春(1967-), 男, 硕士, 正高级工程师, 长期从事矿产勘查与找矿新思路研究。E-mail:zhaomc1854@163.com

    通讯作者:

    余海军(1985-), 男, 博士, 高级工程师, 矿产普查与勘探专业, 长期从事找矿勘查和矿床学研究。E-mail:yhj307@163.com

  • 中图分类号: P552;P613

Ore-forming fluid fracturing treatment of ore-bearing fractures and the characteristics of the related veins in porphyry deposits

  • 摘要: 斑岩型矿石中脉体穿切关系普遍而复杂。斑岩型矿床容矿初始裂隙之间具有程度不同的连通关系,成矿作用过程是成矿组分在既有的裂隙中迁移、充填和沉淀的过程。在多期成矿过程中,如果没有构造应力的改造,似乎不应该出现大量脉体的多期穿切关系。然而不仅是斑岩型矿床,其他与热液活动有关的矿床中均可出现大量脉体的相互穿切现象。针对此种现象,运用水力压裂机理,探讨了成矿流体对初始裂隙的压裂改造作用,认为成矿阶段多期流体活动可以形成与流体活动期次和强度相匹配的无数期新生压裂裂隙,同时可极大地扩展容矿空间的规模和范围。成矿流体压裂改造裂隙也是斑岩型矿床容矿裂隙的重要成因类型。由于流体活动的多期性和压裂裂隙生长的快速性,相比构造活动对脉体的改造,流体压裂成因裂隙所导致的脉体穿切关系更为常见。这些观点较好地解释了斑岩型矿床中频繁而复杂的脉体穿切和错断关系。

     

  • 图  1  压裂过程中井底压力变化曲线(高荫桐,1989曲占庆和王卫阳,2009)

    Figure  1.  Curves of the bottom hole pressure during fracturing (Gao, 1989; Qu and Wang, 2009)

    图  2  三向应力状态和裂缝形态示意图(曲占庆和王卫阳,2009)

    σz-垂直方向的主压应力;σx-x轴方向的水平主压应力;σy-y轴方向的水平主压应力

    Figure  2.  Schematic diagram of the three-dimensional stress state and the crack shape (Qu and Wang, 2009)

    图  3  西藏驱龙斑岩铜矿区无成矿流体压裂改造的脉体特征照片(据杨志明等,2008)

    Figure  3.  Photo showing veins formed without fluid fracturing in the Qulong porphyry Cu deposit in Tibet, China. (Yang et al., 2008)

    图  4  流体压裂作用对相互连通的初始裂隙的改造过程示意图

    Figure  4.  Schematic diagram showing the fluid fracturing effect on the initial interconnected fractures

    图  5  流体压裂作用对孤立的初始裂隙群的改造过程示意图

    Figure  5.  Schematic diagram showing the fluid fracturing effect on the isolated initial fractures

    图  6  T型和H型流体压裂裂隙形成过程示意图

    Figure  6.  Schematic diagram showing the forming process of fractures under T-type and H-type fluid fracturing

    图  7  早期充填程度不同的裂隙压裂改造程度差异示意图

    ①-早期饱和充填的裂隙一般不再发生扩张,其中的脉体可被后期裂隙所穿切;②-早期半饱和充填裂隙也可发生一定程度的扩张;③-早期未充填的裂隙扩张规模最大

    Figure  7.  Schematic diagram showing the divergence of degree of fracturing with different filling degree at the early stage

    图  8  流体压裂改造裂隙中的脉体交叉、穿切关系示意图(不同花纹示意不同期脉体)

    Figure  8.  Schematic diagram showing cross-cutting of veins in the fractures formed by fluid fracturing (Different patterns indicate veins in different periods)

    图  9  单脉多期和网脉单期充填特征素描和照片

    Q-石英; Mt-磁铁矿; Gp-石膏; Cp-黄铜矿; Py-黄铁矿a-山东乳山石英脉型金矿脉有绢云母带、Ⅰ期石英、Ⅱ期石英、黄铁矿+菱铁矿和金属硫化物等5期脉体充填(高太忠等,1999;①-⑤表示脉体形成的先后顺序);b-西藏多不杂铜矿区石英、金属硫化物、石膏等3期脉充填(张志等,2014;ZK0008-153.8 m);c-西藏多不杂铜矿区石英、金属硫化物、石膏等2期脉充填(张志等,2014;ZK0004-215 m);d-西藏波龙铜矿区钾长石、黑云母脉2期脉充填(杨毅等,2015;17101-369.2 m);e-滇西北格咱某斑岩铜矿区网状压裂裂隙被同期石英+硫化物充填;f-西藏多不杂铜矿区网状压裂裂隙被同期石膏充填(张志等,2014;Z0012-132 m)

    Figure  9.  Sketches and photos showing filling characteristics of the multi-stage single vein and the single-stage net vein

    图  10  多期脉体穿切关系照片

    Q-石英; Mt-磁铁矿; Gp-石膏; Cp-黄铜矿; Py-黄铁矿; Kfs-钾长石; Bi-黑云母; ①-⑤表示脉体形成的先后顺序脉体无明显错断情形:a-西藏波龙铜矿区3期B型脉被D型脉穿切(杨毅等,2015;17103-621.5 m);b-西藏多不杂铜矿区2期A型脉被B型脉穿切(张志等,2014;ZK0704-414.1 m)脉体有较明显断距情形:c-e-西藏多不杂铜矿区矿芯中可见4~5期脉体穿切(张志等,2014);f-滇西北格咱某斑岩铜矿区大量脉体高频度相互穿切

    Figure  10.  Photos showing cross-cutting of the multi-stage veins

    表  1  斑岩型矿床不同成因初始裂隙的主要特征对比表(据赵茂春等,2020修改)

    Table  1.   Characteristics of initial fractures of different genesis in the porphyry deposits(modified after Zhao et al., 2020)

    特征 内因裂隙 外因裂隙
    冷缩裂隙 水岩分离裂隙 挤压裂隙 区域应力叠加裂隙
    裂隙位置 斑岩体内 斑岩体及顶部围岩中 围岩中 主要产于斑岩体内
    裂隙率 岩体顶部和边缘裂隙率高(均在岩体内部) 岩体中轴部裂隙率高(可跨入顶部围岩中) 接触带附近围岩中裂隙率高 局部裂隙率增高
    脉体分布 分布均匀 分布不均匀 分布不均匀 特定方向脉体具优势
    脉体长宽 长数十厘米以内,宽度在数毫米以内 长数米以上为主,宽数毫米-数厘米以上 长数米以上为主,宽度数毫米-数厘米 特定方向的脉体变长、变宽,数量增多。
    脉体产状 不具定向性 以陡倾为主 以陡倾为主,缓倾次之 与区域主构造面平行
    脉体密度 岩体顶部密度较高 岩体中轴部密度较高 接触带附近密度变高 局部密度变高
    矿体位置 斑岩体内(顶部) 斑岩中轴部及顶部围岩 围岩内 主要产于斑岩体内
    矿体形态 钟状为主 柱状、纺锤状、倒锥状、不规则状等 钟状为主 似层状、脉状
    矿石构造 细脉浸染状 细脉浸染状、脉状、角砾状 细脉浸染状、脉状、角砾状 细脉浸染状、脉状
    典型矿床 云南普朗铜矿、安徽沙坪沟钼矿、西藏驱龙铜矿、吉林大黑山钼矿、陕西金堆城钼矿、西藏玉龙铜矿、美国Climax钼矿、智利El Teniente矿区Braden角砾岩、澳大利亚Cadia Ridgeway铜金矿 秘鲁Don Javier铜钼矿、西藏驱龙铜矿、塞尔维亚波尔铜矿 伊朗Sar Cheshmeh斑岩铜矿、智利El Teniente铜钼矿、印尼Grasberg铜金矿、澳大利亚Cadia Ridgeway铜金矿、秘鲁库阿霍涅铜矿、江西德兴铜厂及富家坞铜矿、吉林大黑山钼矿、陕西金堆城斑岩钼矿 云南普朗铜矿、雪鸡坪铜矿、烂泥塘铜矿等,吉林大黑山钼矿、陕西金堆城斑岩钼矿
    矿床数量 常见 相对少见 常见 相对少见
    下载: 导出CSV
  • BURNHAM C W, 1979. Magmas and hydrothermal fluids[M]//BARNES H L. Geochemistry of hydrothermal Ore deposits. 2nd ed. New York: John Wiley and Sons: 71-136.
    CANNELL J, COOKE D R, WALSHE J L, et al., 2005. Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit[J]. Economic Geology, 100(5):979-1003.
    CANNELL J, COOKE D R, WALSHE J L, et al., 2007. Geology, mineralization, alteration and structural evolution of El Teniente porphyry Cu-Mo deposit-A reply[J]. Economic Geology, 102(6):1171-1180. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=792ce0a51a5709cbabe42a17996c5a5e
    CHEN B L, 2001. Calculation of metallogenic depth of lode gold deposits from mineralization structure-dynamics[J]. Chinese Journal of Geology, 36(3):380-384. (in Chinese with English abstract)
    CHEN X H, YANG N, CHEN Z L, et al., 2010. Geological characteristics and metallogenic model of super-large porphyry copper deposit in Aktogai ore field, Kazakhstan[J]. Journal of Geomechanics, 16(4):325-339. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201004001
    GAO H M, YU C W, BAO Z Y, 1994. Dynamics of vein formation in porphyry copper deposits[J]. Geological Review, 40(6):508-512. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/OA000003096
    GAO T Z, YANG M Z, JIN C Z, et al., 1999. Study on fluid and tectonodynamics of quartz vein-type gold deposits in the Mouping-Rushan gold belt, Shandong province, China[J]. Geotectonica et Metallogenia, 23(2):130-136. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx199902005
    GAO Y T, 1989. Production engineering[M]. Beijing:Petroleum Industry Press:1-277. (in Chinese)
    GUSTAFSON L B, HUNT J P, 1975. The porphyry copper deposit at El Salvador, Chile[J]. Economic Geology, 70(5):857-912. doi: 10.2113-gsecongeo.70.5.857/
    HAN S Q, CHEN X H, YANG N, et al., 2010. Geological characteristics and metallogenic model of super-large Kounrad porphyry copper deposit, Kazakhstan[J]. Journal of Geomechanics, 16(2):203-212. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201002009
    HE Z H, GUAN D R, HE W Y, et al., 2016. Exploration model of Beiya superlarge gold-polymetallic deposit, northwestern Yunnan[J]. Mineral Deposits, 35(2):261-282. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201602004
    HOU Z Q, 2004. Porphyry Cu-Mo-Au deposits:some new insights and advances[J]. Earth Science Frontiers, 11(1):131-144. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy200401010
    HOU Z Q, YANG Z M, 2009. Porphyry deposits in continental settings of China:geological characteristics, magmatic-hydrothermal system, and metallogenic model[J]. Acta Geological Sinica, 83(12):1779-1817. (in Chinese with English abstract)
    HU W, HUANG R Q, MCSAVENEY M, et al., 2019. Superheated steam, hot CO2 and dynamic recrystallization from frictional heat jointly lubricated a giant landslide:field and experimental evidence[J]. Earth and Planetary Science Letters, 510:85-93.
    HUANG R S, 2008. Igneous series and epithermal porphyry Cu-Au-Ag mineralization system in the Zijinshan ore field, Fujian Province[J]. Journal of Geomechanics, 14(1):74-86. (in Chinese with English abstract)
    KERRICH R, GOLDFARB R, GROVES D, et al., 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China Series D:Earth Sciences, 43(S1):1-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd8a15e8962d8adb5a9794bdaac3c79b
    KNAPP R B, NORTON D, 1981. Preliminary numerical analysis of processes related to magma crystallization and stress evolution in cooling pluton environments[J]. American Journal of Science, 281(1):35-68. doi: 10.2475-ajs.281.1.35/
    LI W C, XUE Y X, LU Y X, et al., 2014. Metallogenic regularity and porphyry copper deposit in China[M]. Beijing: Geological Publishing House: 1-411. (in Chinese)
    LIU J Z, WANG X J, SUN Y L, et al., 2002. Possibility study on multi-fracture creation during artificial hydraulic fracturing[J]. Petroleum Exploration and Development, 29(3):103-106. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200203033
    MAO J W, ZHANG Z H, WANG Y T, et al., 2012a. Mineral deposits:types, characteristics and explorations[M]. Beijing:Geological Publishing House:1-480. (in Chinese)
    MAO J W, ZHANG Z H, PEI R F, 2012b. Mineral deposit model in China[M]. Beijing:Geological Publishing House:1-560. (in Chinese)
    Mao J W, Luo M C, Xie G Q, et al., 2014. Basic characteristics and new advances in research and exploration on porphyry copper deposits[J]. Acta Geological Sinica, 88(12):2153-2175 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201412002
    NIU C Y, WANG F, QIU J S, et al., 1996. The quantitative model of ore-bearing fissure distribution of the Shaxi porphyry copper-gold deposit, Anhui[J]. Geological Ore-Finding Cluster, 11(2):1-9. (in Chinese with English abstract)
    QU Z Q, WANG W Y, 2009. Oil production engineering[M]. Dongying:China University of Petroleum Press:1-290. (in Chinese)
    REHRIG W A, HEIDRICK T L, 1972. Regional fracturing in Laramide stocks of Arizona and its relationship to porphyry copper mineralization[J]. Economic Geology, 67(2):198-213.
    REN Q J, WU Y B, WU Y C, et al., 1987. Distribution pattern and origin of ore-bearing fissures in the Jinduicheng porphyry molybdenum deposit, Shaanxi Province[J]. Mineral Deposits, 6(3):35-48. (in Chinese with English abstract)
    ROBB L J, 2005. Introduction to ore-forming processes[M]. Malden, MA: Blackwell Publishing: 1-373.
    RUI Z Y, HUANG C K, QI G M, et al., 1984. Porphyry copper (Molybdenum) deposit of China[M]. Beijing:Geological Publishing House:1-350. (in Chinese)
    SUN D S, WANG H C, HOU M, et al., 2006. Factors influencing the effects of hydrofracturing in a low-permeability oilfield and potential evaluation using artificial neural network[J]. Journal of Geomechanics, 12(4):485-491. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200604012
    SUN W D, HUANG R F, LI H, et al., 2015. Porphyry deposits and oxidized magmas[J]. Ore Geology Reviews, 65:97-131. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232405025/
    TANG Y, TANG X, WANG G Y, et al., 2011. Summary of hydraulic fracturing technology in shale gas development[J]. Geological Bulletin of China, 30(2-3):393-399. (in Chinese with English abstract)
    TITLEY S R, HEIDRICK T L, 1978. Intrusion and fracture styles of some mineralized porphyry systems of the Southwestern Pacific and their relationship to plate interaction[J]. Economic Geology, 73(5):891-903.
    TITLEY S R, 1982. Advances in geology of the porphyry copper deposits[M]. Tucson:The University of Arizona Press:560.
    TITLEY S R, THOMPSON R C, HAYNES F M, et al., 1986. Evolution of fractures and alteration in the Sierrita-Esperanza hydrothermal system, Pima County, Arizona[J]. Economic Geology, 81(2):343-370.
    WANG C Y, LI X F, XIAO R, et al., 2012. Types and distribution of veins in Tongchang porphyry copper deposit, Dexing, Jiangxi Province[J]. Mineral Deposits, 31(1):94-100. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201201008
    WANG J X, NIE F J, ZHANG X N, et al., 2015. The El Teniente porphyry Cu-Mo deposit, Chile[J]. Mineral Deposits, 34(1):200-203. (in Chinese) doi: 10.2113-gsecongeo.102.6.1021/
    WANG K, YANG F, LI F, et al., 2016. Study on the hydrothermal alteration and vein systems of the Pulang porphyry copper deposit in Yunnan Province[J]. Geology and Exploration, 52(3):417-428. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201603003
    WANG R, DING Z Y, YIN Y Q, 1979. Fundamental of solid mechanics[M]. Beijing:Geological Publishing House:1-370. (in Chinese)
    WANG Z L, MAO J W, ZHANG Z H, et al., 2006. Geology, time-space Distribution and metallogenic geodynamic evolution of porphyry copper (Molybdenum) deposits in the Tianshan mountains[J]. Acta Geologica Sinica, 80(7):943-955. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200607002
    WANG Z T, 1994. Geology and exploration of large copper deposits[M]. Beijing:Metallurgical Industry Press:1-162. (in Chinese)
    XU X W, NIU L, HONG T, et al., 2019. Tectonic dynamics of fluids and metallogenesis[J]. Journal of Geomechanics, 25(1):1-8. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201901002
    YANG L, LI M H, WU W D, et al., 2013. Analysis of fracture elongation characteristics in fractured oil reservoirs-a case study of limestone reservoirs in block 9 of Karamay oil field[J]. Geological Review, 59(S1):707-708. (in Chinese)
    YANG M G, ZHOU Z Y, HUANG Y Q, 1993. Structural control of porphyry-related copper deposits in Jiangxi province[J]. Journal of Geomechanics, 1993(5):1-23. (in Chinese)
    YANG Y, ZHANG Z, TANG J X, et al., 2015. Mineralization, alteration and vein systems of the Bolong porphyry copper deposit in the Duolong ore concentration area, Tibet[J]. Geology in China, 42(3):759-776. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201503026
    YANG Z M, HOU Z Q, SONG Y C, et al., 2008. Qulong superlarge porphyry Cu deposit in Tibet:geology, alteration and mineralization[J]. Mineral Deposits, 27(3):279-318. (in Chinese with English abstract)
    YAO C L, LU J J, GUO W M, et al., 2007. The latest advances in researches on porphyry copper deposits[J]. Mineral Deposits, 26 (2):221-229. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200702009
    YAO F L, SUN F Y, 2006. Mineral deposits course[M]. Beijing:Geological Publishing House:1-214. (in Chinese)
    YE T Z, LV Z C, PANG Z S, et al., 2014. Metallogenic prognosis theories and methods in explorations areas[M]. Beijing:Geological Publishing House:1-703. (in Chinese)
    YE T Z, WEI C S, WANG Y W, et al., 2017. Metallogenic prognosis theories and methods in exploration areas[M]. Beijing:Geological Publishing House:1-594. (in Chinese)
    ZENG Z P, LIU Z, MA J, et al., 2019. A new method for fracrability evaluation in deep and tight sandstone reservoirs[J]. Journal of Geomechanics, 25(2):223-232. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201902009
    ZHAI Y S, LIN X D, 1993. Study of ore field structure[M]. Beijing:Geological Publishing House:1-214. (in Chinese)
    ZHANG H T, RUI Z Y, 1991. On the genetic classification of mineralized breccias related to porphyry deposits and its geological significance[J]. Mineral Deposits, 10(3):265-271. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ199103008.htm
    ZHANG L, ZHAO X M, LIU C Y, et al., 2008. Deposition confines hydraulic fracture length[J]. Petroleum Exploration and Development, 35(2):201-204. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/syktykf200802011
    ZHANG M L, DONG C L, LIN J H, 2017. The application of geostress layering technology in fracture design optimization[J]. Journal of Geomechanics, 23(3):467-474. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201703014
    ZHANG Y, LIANG G L, WU Q Y, et al., 2010. Characteristics and formation mechanism of the veins in Mengxi porphyry Cu-Mo deposit, eastern Junggar, Xinjiang, China[J]. Acta Petrologica Sinica, 26(10):2997-3006. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201010011
    ZHANG Z, CHEN Y C, TANG J X, et al., 2014. Alteration and vein systems of Duobuza gold-rich porphyry copper deposit, Tibet[J]. Mineral Deposits, 33(6):1268-1286. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201406008
    ZHAO M C, YU X C, WANG Z C, et al., 2017. Structural analysis method of geological body combination and mineral prospecting[J]. Geological Review, 63(6):1535-1548. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201706010
    ZHAO M C, YU X C, WANG Y W, et al., 2019. Genetic mechanism, types and metallogenisis of cooling fissures in magmatic rocks[J]. Journal of Geology, 43(2):175-183. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/jsdz201902001
    ZHAO M C, YU X C, ZHANG Y F, et al., 2020. Conceptual model for genesis of mineralized fissures in porphyry deposits and its geological significance[J]. Mineral Deposits, 39(1):19-41. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/kcdz202001002
    ZHAO X D, ZHAO Y H, ZHU Y P, et al., 2017. Geology, metallogenic features and genesis of the El Teniente porphyry copper-Molybdnum deposit in Central Chile[J]. Geological Bulletin of China, 36(12):2287-2295. (in Chinese with English abstract)
    ZHOU D Q, YANG Q J, 2003. Cognition of hydraulic fracture extension direction which runs parallel to fault[J]. Drilling & Production Technology, 25(6):39-41. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zcgy200306014
    ZHOU Y J, 1985. Alteration and Mineralization zoning of ore deposits in the Yulong porphyry Copper Belt[J]. Mineral Deposits, 4(2):23-30. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ198502002.htm
    ZHU Z C, 1999. Structural geology[M]. 2nd ed. Beijing:China University of China Press:1-261. (in Chinese)
    陈柏林, 2001.从成矿构造动力学探讨脉状金矿床成矿深度[J].地质科学, 36(3):380-384. http://d.old.wanfangdata.com.cn/Periodical/dzkx200103014
    陈宣华, 杨农, 陈正乐, 等, 2010.哈萨克斯坦阿克斗卡超大型斑岩型铜矿田地质特征与成矿模式[J].地质力学学报, 16(4):325-339. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100401&journal_id=dzlxxb
    高合明, 於崇文, 鲍征宇, 1994.斑岩铜矿床中脉体形成的动力学[J].地质论评, 40(6):508-512. http://d.old.wanfangdata.com.cn/Periodical/OA000003096
    高太忠, 杨敏之, 金成洙, 等, 1999.山东牟乳石英脉型金矿流体成矿构造动力学研究[J].大地构造与成矿学, 23(2):130-136. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx199902005
    高荫桐, 1989.采油工程[M].北京:石油工业出版社:1-277.
    韩淑琴, 陈宣华, 杨农, 等, 2010.哈萨克斯坦科翁腊德斑岩型铜矿地质特征与成矿模式[J].地质力学学报, 16(2):203-212. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100208&journal_id=dzlxxb
    和中华, 官德任, 和文言, 等, 2016.滇西北衙超大型金多金属矿床勘查模型[J].矿床地质, 35(2):261-282. http://d.old.wanfangdata.com.cn/Periodical/kcdz201602004
    侯增谦, 2004.斑岩Cu-Mo-Au矿床:新认识与新进展[J].地学前缘, 11(1):131-144. http://d.old.wanfangdata.com.cn/Periodical/dxqy200401010
    侯增谦, 杨志明, 2009.中国大陆环境斑岩型矿床:基本地质特征、岩浆热液系统和成矿概念模型[J].地质学报, 83(12):1779-1817. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200912002
    黄仁生, 2008.福建紫金山矿田火成岩系列与浅成低温热液:斑岩铜金银成矿系统[J].地质力学学报, 14(1):74-86. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20080107&journal_id=dzlxxb
    李文昌, 薛迎喜, 卢映祥, 等, 2014.中国斑岩铜矿成矿规律及找矿方向[M].北京:地质出版社:1-411.
    刘建中, 王秀娟, 孙玉玲, 等, 2002.人工压裂形成多裂缝的可能性研究[J].石油勘探与开发, 29(3):103-106. http://d.old.wanfangdata.com.cn/Periodical/syktykf200203033
    毛景文, 张作衡, 王义天, 等, 2012a.国外主要矿床类型、特点及找矿勘查[M].北京:地质出版社:1-480.
    毛景文, 张作衡, 裴荣富, 2012b.中国矿床模型概论[M].北京:地质出版社:1-560.
    毛景文, 罗茂澄, 谢桂青, 等.2014.斑岩铜矿床的基本特征和研究勘查新进展[J].地质学报, 88(12):2153-2175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201412002
    牛翠祎, 王峰, 邱检生, 等, 1996.安徽沙溪斑岩型铜金矿床含矿裂隙分布的定量模型[J].地质找矿论丛, 11(2):1-9.
    曲占庆, 王卫阳, 2009.采油工程[M].东营:中国石油大学出版社:1-290.
    任启江, 吴俞斌, 武耀城, 等, 1987.陕西金堆城斑岩钼矿含矿裂隙分布规律与成因[J].矿床地质, 6(3):35-48.
    芮宗瑶, 黄崇轲, 齐国明, 等, 1984.中国斑岩铜(钼)矿床[M].北京:地质出版社:1-350.
    孙东生, 王红才, 侯默, 等, 2006.影响水力压裂效果的因素及人工神经网络评价[J].地质力学学报, 12(4):485-491. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20060412&journal_id=dzlxxb
    唐颖, 唐玄, 王广源, 等, 2011.页岩气开发水力压裂技术综述[J].地质通报, 30(2-3):393-399. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201102026
    王翠云, 李晓峰, 肖荣, 等, 2012.德兴铜厂斑岩铜矿脉体类型、分布规律及其对成矿的指示意义[J].矿床地质, 31(1):94-100. http://d.old.wanfangdata.com.cn/Periodical/kcdz201201008
    王佳新, 聂凤军, 张雪旎, 等, 2015.智利埃尔特尼恩特斑岩型铜-钼矿床[J].矿床地质, 34(1):200-203. http://d.old.wanfangdata.com.cn/Periodical/kcdz201501013
    王仁, 丁中一, 殷有泉, 1979.固体力学基础[M].北京:地质出版社:1-370.
    王志良, 毛景文, 张作衡, 等, 2006.新疆天山斑岩铜钼矿地质特征、时空分布及其成矿地球动力学演化[J].地质学报, 80(7):943-955. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200607002
    王之田, 1994.大型铜矿地质与找矿[M].北京:冶金工业出版社:1-162.
    徐兴旺, 牛磊, 洪涛, 等, 2019.流体构造动力学与成矿作用[J].地质力学学报, 25(1):1-8. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190101&journal_id=dzlxxb
    杨龙, 李民河, 武卫东, 等, 2013.裂缝性油藏压裂裂缝延伸特征分析:以克拉玛依油田九区石炭系油藏为例[J].地质论评, 59(S1):707-708.
    杨明桂, 周子英, 黄永泉, 1993.江西与斑岩有关铜矿床的构造控制作用[J].地质力学学报, 1993(5):1-23. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19930501&journal_id=dzlxxb
    杨毅, 张志, 唐菊兴, 等, 2015.西藏多龙矿集区波龙斑岩铜矿床蚀变与脉体系统[J].中国地质, 42(3):759-776. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201503026
    杨志明, 侯增谦, 宋玉财, 等, 2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿[J].矿床地质, 27(3):279-318. http://d.old.wanfangdata.com.cn/Periodical/kcdz200803002
    姚春亮, 陆建军, 郭维民, 等, 2007.斑岩铜矿若干问题的最新研究进展[J].矿床地质, 26(2):221-229. http://d.old.wanfangdata.com.cn/Periodical/kcdz200702009
    姚凤良, 孙丰月, 2006.矿床学教程[M].北京:地质出版社:1-214.
    叶天竺, 吕志成, 庞振山, 等, 2014.勘查区找矿预测理论与方法[M].北京:地质出版社:1-703.
    叶天竺, 韦昌山, 王玉往, 等, 2017.勘查区找矿预测理论与方法[M].北京:地质出版社:1-594.
    曾治平, 刘震, 马骥, 等, 2019.深层致密砂岩储层可压裂性评价新方法[J].地质力学学报, 25(2):223-232. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190208&journal_id=dzlxxb
    翟裕生, 林新多, 1993.矿田构造学[M].北京:地质出版社:1-214.
    张洪涛, 芮宗瑶, 1991.论与斑岩矿床有关的矿化角砾岩成因类型及其地质意义[J].矿床地质, 10(3):265-271.
    张林, 赵喜民, 刘池洋, 等, 2008.沉积作用对水力压裂裂缝缝长的限制作用[J].石油勘探与开发, 35(2):201-204. http://d.old.wanfangdata.com.cn/Periodical/syktykf200802011
    张美玲, 董传雷, 蔺建华, 2017.地应力分层技术在压裂设计优化中的应用[J].地质力学学报, 23(3):467-474. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170314&journal_id=dzlxxb
    张永, 梁广林, 吴倩怡, 等, 2010.东准噶尔蒙西斑岩铜钼矿床脉体特征及其形成机制[J].岩石学报, 26(10):2997-3006. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010011
    张志, 陈毓川, 唐菊新, 等, 2014.西藏多不杂富金斑岩铜矿床蚀变与脉体系统[J].矿床地质, 33(6):1268-1286. http://d.old.wanfangdata.com.cn/Periodical/kcdz201406008
    赵茂春, 余先川, 王泽传, 等, 2017.地质体组合构造分析方法与找矿[J].地质论评, 63(6):1535-1548. http://d.old.wanfangdata.com.cn/Periodical/dzlp201706010
    赵茂春, 余先川, 王亚伟, 等, 2019.岩浆岩冷缩裂隙形成机制、类型及成矿作用[J].地质学刊, 43(2):175-183. http://d.old.wanfangdata.com.cn/Periodical/jsdz201902001
    赵茂春, 余先川, 张翼飞, 等, 2020.斑岩型矿床容矿裂隙成因的几种概念模型及其意义[J].矿床地质, 39(1):19-41. http://d.old.wanfangdata.com.cn/Periodical/kcdz202001002
    赵晓丹, 赵宇浩, 朱意萍, 等, 2017.智利中部埃尔特尼恩特斑岩型铜钼矿床地质、成矿特征及成因[J].地质通报, 36(12):2287-2295. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201712020
    周道全, 杨全疆, 2003.对水力压裂裂缝延伸方向平行于断层的认识[J].钻采工艺, 25(6):39-41. http://d.old.wanfangdata.com.cn/Periodical/nmgsyhg200301075
    周宜吉, 1985.试论玉龙斑岩铜矿带内矿床的蚀变和矿化分带[J].矿床地质, 4(2):23-30.
    朱志澄, 1999.构造地质学[M].2版.北京:中国地质大学出版社:1-261.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  114
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-05-10
  • 刊出日期:  2020-06-28

目录

    /

    返回文章
    返回