留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地裂缝场地施工降水对地表沉降和地层应力的影响研究

王庆兵 黄强兵 闫钰丰 杨招 胡士伟 雷建

王庆兵, 黄强兵, 闫钰丰, 等, 2020. 地裂缝场地施工降水对地表沉降和地层应力的影响研究. 地质力学学报, 26 (2): 221-231. DOI: 10.12090/j.issn.1006-6616.2020.26.02.021
引用本文: 王庆兵, 黄强兵, 闫钰丰, 等, 2020. 地裂缝场地施工降水对地表沉降和地层应力的影响研究. 地质力学学报, 26 (2): 221-231. DOI: 10.12090/j.issn.1006-6616.2020.26.02.021
WANG Qingbing, HUANG Qiangbing, YAN Yufeng, et al., 2020. Study on influence of construction precipitation on surface settlement and stratum stress on the ground fissure site. Journal of Geomechanics, 26 (2): 221-231. DOI: 10.12090/j.issn.1006-6616.2020.26.02.021
Citation: WANG Qingbing, HUANG Qiangbing, YAN Yufeng, et al., 2020. Study on influence of construction precipitation on surface settlement and stratum stress on the ground fissure site. Journal of Geomechanics, 26 (2): 221-231. DOI: 10.12090/j.issn.1006-6616.2020.26.02.021

地裂缝场地施工降水对地表沉降和地层应力的影响研究

doi: 10.12090/j.issn.1006-6616.2020.26.02.021
基金项目: 

国家自然科学基金项目 41772274

国家自然科学基金项目 41372328

北京市政路桥集团有限公司科研项目 220226180066

详细信息
    作者简介:

    王庆兵(1984-), 男, 本科, 工程师, 主要从事岩土及地下工程方向研究工作。E-mail:15129938408@139.com

    通讯作者:

    黄强兵(1972-), 男, 博士, 教授, 主要从事地质工程、岩土及地下工程等方面的科研和教学工作。E-mail:dcdgx24@chd.edu.cn

  • 中图分类号: P642.27

Study on influence of construction precipitation on surface settlement and stratum stress on the ground fissure site

  • 摘要: 地裂缝是西安市典型的城市地质灾害,地下水位的变化是诱发地裂缝活动的重要因素。以西安地铁六号线暗挖段施工降水为研究背景,基于有限元数值模拟计算,分析了地裂缝场地施工降水引起的地表沉降规律和地层应力变化特征。计算结果表明:当地下水位下降时,地表沉降量上盘大于下盘,地裂缝带两侧地表存在差异沉降的现象,最大差异沉降量与地下水位下降深度近似呈直线关系;不同位置处地表的横向沉降呈现出"Z"形的变化特征,差异沉降区随地裂缝位置的变动而变化,且差异沉降量与横向地表位置近似呈二次函数曲线关系;地层竖向应力随着地下水位下降而增大,地裂缝位置处地层应力存在突变现象,上下盘应力影响区与地层深度近似呈三次函数曲线关系;基于分层总和法计算了地下水位下降时地表沉降量的解析解,并与数值模拟结果进行对比,发现两种方法计算结果基本一致,得到了计算地表最大沉降量的经验公式。研究结果可为地裂缝场地地铁隧道及其他地下工程安全施工提供科学指导。

     

  • 图  1  西安地铁六号线规划图

    Figure  1.  The planning map of Xi′an Metro Line 6

    图  2  f8地裂缝场地暗挖施工段平面图

    Figure  2.  The plan diagram of underground excavation construction of shallow tunnel crossing f8 ground fissure site

    图  3  地层模型示意图

    Figure  3.  The schematic diagram of the stratigraphic model

    图  4  f8西段在亚迪路出露

    Figure  4.  Fissures at the west section of f8 are exposed on the Yadi Road surface

    图  5  f8东段在唐延路出露

    Figure  5.  Fissures at the east section of f8 are exposed on the Tangyan Road surface

    图  6  有限元计算模型

    Figure  6.  Finite element calculation model

    图  7  有限元计算流程图

    Figure  7.  Finite element calculation flow chart

    图  8  模型监测线布置图

    Figure  8.  Measuring lines layout of the model

    图  9  地表纵向沉降曲线

    Figure  9.  Curves of the longitudinal surface settlement

    图  10  地表差异沉降量与地下水位变化曲线图

    Figure  10.  Curves of the surface differential settlement and groundwater level change

    图  11  不同位置处地表横向沉降曲线

    Figure  11.  Lateral surface settlement curves at different positions

    图  12  不同位置地表差异沉降曲线图

    Figure  12.  Surface differential settlement curves at different positions

    图  13  不同深度处地层竖向应力曲线

    Figure  13.  Vertical stress curves of strata at different depths

    图  14  应力影响区随地层深度变化关系曲线

    Figure  14.  Correlation curves of stress affected zone with depth

    图  15  地层沉降计算模型示意图

    Figure  15.  Diagram of the calculation model of surface settlement

    图  16  两种计算方法对比

    Figure  16.  Comparison of the results of two computing methods

    表  1  地裂缝参数表

    Table  1.   Parameters of the ground fissure

    接触面 法向刚度kn/kN·m-3 切向刚度ks/kN·m-3 内聚力c/kPa 内摩擦角 φ/(°)
    地裂缝 1×108 1×108 10 18
    下载: 导出CSV

    表  2  地层计算参数

    Table  2.   Calculation parameters of strata

    土层名称 重度γ/(kN/m3) 弹性模量E/MPa 渗透系数k/(m/day) 内聚力c/(kPa) 内摩擦角φ/(°) 厚度/m
    杂填土 18 12 / 15 19 1.6
    黄土状土 19.8 20 5 25 20.8 7.2
    粉质粘土① 20.1 30.1 3 24 19.9 14.2
    粉质粘土② 20.3 29.7 3 25 21.5 13.8
    粉质粘土③ 20.3 25 3 27 20.4 13.2
    下载: 导出CSV

    表  3  不同地层深度应力影响区

    Table  3.   The stress affected areas at different depths

    地层深度h/m 上盘影响区L/m 下盘影响区L/m 总影响区L/m
    5 15.58 18.30 33.88
    10 12.58 13.64 26.22
    15 11.36 12.88 24.24
    20 10.91 12.02 22.93
    25 9.50 8.48 17.98
    下载: 导出CSV

    表  4  地层沉降变形计算结果表

    Table  4.   Calculation results of the surface settlement deformation

    地下水位下降量s
    3 m 6 m 9 m 12 m 15 m
    黄土状土 0.31 0 0 0 0
    粉质粘土① 1.57 2.93 2.93 2.93 2.93
    解析解 1.88 4.81 7.74 10.67 13.60
    数值模拟结果 1.78 4.75 7.93 11.47 15.10
    误差量 0.10 0.06 0.19 0.80 1.50
    误差率 5.62% 1.26% 2.40% 6.97% 9.93%
    下载: 导出CSV
  • BURBEY T J, 2010. Mechanisms for Earth Fissure Formation in Heavily Pumped Basins[C]//Proceedings of EISOLS 2010 land subsidence, associated hazards and the role of natural resources development. Mexico: IAHS Publ.: 3-8.
    CHEN X, HUANG Q B, LIU N N, et al., 2018. Study on ground settlement of engineering site of metro tunnel adjacent to ground fissure zone under the action of earthquake [J]. Journal of Geomechanics, 24(5):714-722. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201805015
    FAN W D, 2017. Study on Formation Mechanism of Ground Fissure under the Action of Fault Movement and Groundwater[D]. Xi'an: Chang'an University. (in Chinese with English abstract)
    FAN W, DENG L S, PENG J B, et al., 2008. Research on physical model experiment of metro tunnel crossing ground fissure belt[J]. Chinese Journal of Rock Mechanics and Engineering, 27(9): 1917-1923. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200809021
    FETH J H, 1951. Structural reconnaissance of the Red Rock quadrangle, Arizona[R]. U.S.: United States Department of the Interior Geological Survey, 1-32.
    FLETCHER J E, HARRIS K, PETERSON H B, et al., 1954. Piping[J]. Eos, Transactions American Geophysical Union, 35(2): 258-263. doi: 10.1029/TR035i002p00258
    HERNANDEZ-MARIN M, BURBEY T J, 2010. Controls on initiation and propagation of pumping-induced earth fissures: insights from numerical simulations[J]. Hydrogeology Journal, 18(8): 1773-1785. doi: 10.1007/s10040-010-0642-9
    HOLZER T L, 1981. Preconsolidation stress of aquifer systems in areas of induced land subsidence[J]. Water Resources Research, 17(3): 693-703. doi: 10.1029/WR017i003p00693
    HOLZER T L, 1984. Ground failure induced by ground-water withdrawal from unconsolidated sediment[M]//HOLZER T L. Man-induced land subsidence. US: Geological Society of America: 67-105.
    HU Z P, ZHANG D, ZHANG Y G, et al., 2019. Test study on deformation and failure mechanisms of utility tunnels obliquely crossing ground fissures[J]. Chinese Journal of Rock Mechanics and Engineering, 38(12): 2550-2560. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201912015
    HUANG Q B, PENG J B, MEN Y M, et al., 2008. Model test study on effect of ground fissure on open-cut metro tunnel with integral lining[J]. Chinese Journal of Rock Mechanics and Engineering, 27(11): 2324-2331. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200811021
    HUANG Q B, PENG J B, SHI Y L, et al., 2009a. Experimental study on effect of active ground fissures on stress and displacement change laws of strata near metro tunnels[J]. Chinese Journal of Geotechnical Engineering, 31(10): 1525-1532. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200910008
    HUANG Q B, PENG J B, YAN J K, et al., 2009b. Model test study of influence of ground fissure movement on stress and deformation of soil mass[J]. Rock and Soil Mechanics, 30(4): 903-908. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx200904007
    HUANG Q B, YANG T, WANG Z, et al., 2016. Calculation of vertical strata load of metro tunnel crossing ground fissure zone[J]. Chinese Journal of Rock Mechanics and Engineering, 35(8): 1705-1711. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201608019
    HUANG Q B, GAO H, LIU N N, et al., 2018. Shaking table model test on seismic response of metro tunnel crossing ground fissure site[J]. Journal of Geomechanics, 24(6):785-794. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201806006
    JIANG Z W, 2011. Earth fissure formation mechanism under the role of water and its numerical simulation[D]. Xi'an: Chang'an University. (in Chinese with English abstract)
    JIANG Z W, PENG J B, WANG Q Y, 2012. Numerical simulation of the effect of preexisting fault on land subsidence and ground fissures during pumping[J]. Journal of Jilin University (Earth Science Edition), 42(4): 1099-1103, 1124. (in Chinese with English abstract)
    LI X S, YAN W Z, LI T L, et al., 2001. Analysis on the movement tendency of Xi'an ground fissures[J]. Journal of Engineering Geology, 9(1): 39-43. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0212661940
    LIU G C, 1986. The ground fissures in Xi'an[J]. Journal of Chang'an University Earth Science Edition, 8(4): 9-22. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zdycj201804030
    PENG J B, HUANG Q B, HU Z P, et al., 2017. A proposed solution to the ground fissure encountered in urban metro construction in Xi'an, China[J]. Tunnelling and Underground Space Technology, 61: 12-25. doi: 10.1016/j.tust.2016.09.002
    PENG J B, ZHANG Q, HUANG Q B, et al., 2012. Hazard of ground fissure in Xi'an[M]. Beijing: Science Press: 502-510. (in Chinese)
    PENG J B, LU Q Z, HUANG Q B, et al., 2017. Hazard of ground fissure in Fen-Wei basin[M]. Beijing: Science Press. (in Chinese)
    ROTHENBURG L, OBAH A, EL BARUNI S, 1995. Horizontal ground movements due to water abstraction and formation of earth fissures[C]//Proceedings of the fifth international symposium on land subsidence. The Hague: IAHS Publ.: 239-249.
    WANG J M, 2000. Theory of ground fissures hazards and its application[M]. Xi'an: Shaanxi Science and Technology Press. (in Chinese)
    WANG L, LI X S, LI T L, 2019. Large-scale in-situ submerging experiment on buried ground-fissures expansion[J]. Journal of Geomechanics, 25(3): 412-420. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201903011
    WANG Q L, LIU Y H, CHEN Z X, et al., 2002. Horizontal strain of aquifer induced by groundwater pumping-a new mechanism for ground fissure movement[J]. Journal of Engineering Geology, 10(1): 46-50. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200201008.htm
    WANG X B, PAN Y S, DING X L, et al., 2001. Study on effect of pore pressure on strain localization of rock and digital simulation[J]. Journal of Geomechanics, 7(2): 139-143. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb200102007
    WANG Z F, SHEN S L, CHENG W C, et al., 2016. Ground fissures in Xi'an and measures to prevent damage to the Metro tunnel system due to geohazards[J]. Environmental Earth Sciences, 75(6): 511. doi: 10.1007/s12665-015-5169-x
    WU M, PENG J B, HE K, et al., 2015. Numerical analysis of dislocation of ground fissure on the metro tunnel paralleling to the ground fissure's strike[J]. Journal of Engineering Geology, 23(5): 1020-1029. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201505029
    XU G L, TONG Y H, ZHANG J M, 1992. Effect of pumping groundwater on land subsidence and ground fractures in Xi'an[J]. The Chinese Journal of Geological Hazard and Control, 3(4): 3-7, 15. (in Chinese with English abstract)
    YAN Y F, HUANG Q B, YANG X J, et al., 2018. Research on the deformation and force characteristics of underground utility tunnel crossing ground fissure[J]. Journal of Engineering Geology, 26(5): 1203-1210. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201805012
    YANG L W, YANG M, MEN Y M, et al., 2019. Model test on dynamic interaction among ground fissure, tunnel, and surrounding rock[J]. China Earthquake Engineering Journal, 41(3):710-716. (in Chinese with English abstract)
    YI X F, 1981. The ground fissure in the area of Tielumiao, Xi'an and the changes of groundwater level[J]. Northwestern Seismological Journal, 3(4): 83-85. (in Chinese with English abstract)
    陈星, 黄强兵, 刘妮娜, 等, 2018.地震作用下邻近地裂缝带地铁隧道工程场地地表沉降研究[J].地质力学学报, 24(5):714-722. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20180515&flag=1
    范文, 邓龙胜, 彭建兵, 等, 2008.地铁隧道穿越地裂缝带的物理模型试验研究[J].岩石力学与工程学报, 27(9): 1917-1923. doi: 10.3321/j.issn:1000-6915.2008.09.021
    范文东, 2017.断裂活动与地下水作用下地裂缝成因机制研究[D].西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1017868926.htm
    胡志平, 张丹, 张亚国, 等, 2019.地下综合管廊结构斜穿活动地裂缝的变形破坏机制室内模型试验研究[J].岩石力学与工程学报, 38(12): 2550-2560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201912015
    黄强兵, 彭建兵, 门玉明, 等, 2008.地裂缝对地铁明挖整体式衬砌隧道影响机制的模型试验研究[J].岩石力学与工程学报, 27(11): 2324-2331. doi: 10.3321/j.issn:1000-6915.2008.11.021
    黄强兵, 彭建兵, 石玉玲, 等, 2009a.地裂缝活动对地铁区间隧道地层应力与位移影响试验研究[J].岩土工程学报, 31(10): 1525-1532. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb200910008
    黄强兵, 彭建兵, 闫金凯, 等, 2009b.地裂缝活动对土体应力与变形影响的试验研究[J].岩土力学, 30(4): 903-908. http://d.old.wanfangdata.com.cn/Periodical/ytlx200904007
    黄强兵, 杨涛, 王震, 等, 2016.跨地裂缝地铁隧道竖向地层压力计算方法探讨[J].岩石力学与工程学报, 35(8): 1705-1711. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201608019
    黄强兵, 高欢, 刘妮娜, 等, 2018.地裂缝场地地铁隧道地震动力响应的振动台试验研究[J].地质力学学报, 24(6):785-794. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20180606&flag=1
    蒋臻蔚, 2011.水作用下地裂缝成因机制及数值模拟[D].西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1012142449.htm
    蒋臻蔚, 彭建兵, 王启耀, 2012.先存断裂对抽水沉降及地裂缝活动影响的数值模拟[J].吉林大学学报(地球科学版), 42(4): 1099-1103, 1124. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201204026.htm
    李新生, 闫文中, 李同录, 等, 2001.西安地裂缝活动趋势分析[J].工程地质学报, 9(1): 39-43. doi: 10.3969/j.issn.1004-9665.2001.01.007
    刘国昌, 1986.西安的地裂缝[J].西安地质学院学报, 8(4): 9-22. http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb200901012
    彭建兵, 张勤, 黄强兵, 等, 2012.西安地裂缝灾害[M].北京:科学出版社: 502-510.
    彭建兵, 卢全中, 黄强兵, 等, 2017.汾渭盆地地裂缝灾害[M].北京:科学出版社.
    王景明, 2000.地裂缝及其灾害的理论与应用[M].西安:陕西科学技术出版社.
    汪丽, 李新生, 李同录, 2019.隐伏地裂缝扩展的大型原位浸水试验研究[J].地质力学学报, 25(3): 412-420. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20190311&flag=1
    王庆良, 刘玉海, 陈志新, 等, 2002.抽水引起的含水层水平应变:地裂缝活动新机理[J].工程地质学报, 10(1): 46-50. doi: 10.3969/j.issn.1004-9665.2002.01.008
    王学滨, 潘一山, 丁秀丽, 等, 2001.孔隙流体对岩体变形局部化的影响及数值模拟研究[J].地质力学学报, 7(2): 139-143. doi: 10.3969/j.issn.1006-6616.2001.02.007
    吴明, 彭建兵, 贺凯, 等, 2015.地铁隧道受平行向地裂缝错动影响数值分析[J].工程地质学报, 23(5): 1020-1029. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201505029
    徐光黎, 佟永贺, 张家明, 1992.地下水抽汲对西安地面沉降和地裂缝活动的影响程度分析[J].中国地质灾害与防治学报, 3(4): 3-7, 15. http://www.cnki.com.cn/Article/CJFDTotal-ZGDH199204000.htm
    闫钰丰, 黄强兵, 杨学军, 等, 2018.地下综合管廊穿越地裂缝变形与受力特征研究[J].工程地质学报, 26(5): 1203-1210. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201805012
    杨龙伟, 杨觅, 门玉明, 等, 2019.地裂缝-隧道-围岩动力相互作用模型试验研究[J].地震工程学报, 41(3):710-716. doi: 10.3969/j.issn.1000-0844.2019.03.710
    易学发, 1981.西安铁炉庙地裂缝与地下水的动态变化[J].西北地震学报, 3(4): 83-85. http://www.cnki.com.cn/Article/CJFDTotal-ZBDZ198104014.htm
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  57
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-26
  • 修回日期:  2019-11-28
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回