留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度

王成虎 高桂云 王洪 王璞

王成虎, 高桂云, 王洪, 等, 2020. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度. 地质力学学报, 26 (2): 167-174. DOI: 10.12090/j.issn.1006-6616.2020.26.02.016
引用本文: 王成虎, 高桂云, 王洪, 等, 2020. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度. 地质力学学报, 26 (2): 167-174. DOI: 10.12090/j.issn.1006-6616.2020.26.02.016
WANG Chenghu, GAO Guiyun, WANG Hong, et al., 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests. Journal of Geomechanics, 26 (2): 167-174. DOI: 10.12090/j.issn.1006-6616.2020.26.02.016
Citation: WANG Chenghu, GAO Guiyun, WANG Hong, et al., 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests. Journal of Geomechanics, 26 (2): 167-174. DOI: 10.12090/j.issn.1006-6616.2020.26.02.016

利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度

doi: 10.12090/j.issn.1006-6616.2020.26.02.016
基金项目: 

国家自然科学基金资助项目 41574088

详细信息
    作者简介:

    王成虎(1978-), 男, 博士, 研究员, 主要从事地应力与地质力学、断层力学等相关研究。E-mail:huchengwang@163.com

  • 中图分类号: TU45

Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests

  • 摘要: 钻杆式水压致裂原地应力测试系统的柔性会影响最大水平主应力的计算精度。利用空心岩柱液压致裂试验获得的岩石抗拉强度来取代重张压力计算最大水平主应力是降低钻杆式测试系统柔性的负面影响的重要途径。在福建某隧道深度为65 m的钻孔内开展了8段的高质量水压致裂原地应力测试,随后利用钻孔所揭露的完整岩芯开展了17个岩样的空心岩柱液压致裂试验。利用空心岩柱液压致裂所得的抗拉强度平均值为8.40 MPa,与经典水压致裂法确定的岩体抗拉强度8.22 MPa接近。对于20 m的范围内8个测段的原地应力量值,最小水平主应力平均值为8.41 MPa,基于重张压力Pr的最大水平主应力平均值为16.70 MPa;基于空心岩柱抗拉强度的最大水平主应力量值平均值为16.88 MPa,两种方法获得的最大水平主应力平均值基本一致。最大最小水平主应力与垂直主应力之间的关系表现为σH > σV > σh,这种应力状态有利于区域走滑断层活动。通过对比分析可知,对于钻杆式水压致裂原地应力测试系统,当测试深度小且测试系统柔性小时,基于重张压力和基于空心岩柱抗拉强度得到的最大水平主应力量值差别不大,这说明基于空心岩柱的岩石抗拉强度完全可以用于水压致裂最大水平主应力的计算,同时基于微小系统柔性的水压致裂测试系统获得的现场岩体强度也是可靠的。

     

  • 图  1  空心岩柱试验力学模型与加载示意图

    σz—轴向应力;σr—径向应力;σθ—切向应力;Pr—内孔液压力;Pa—轴向压力;r1—岩样内孔半径;R2—岩样外半径

    Figure  1.  Mechanical model of the hollow cylinder rock specimen test and the loading diagram

    图  2  某隧道内钻孔水压致裂原地应力测量压力-时间曲线

    Figure  2.  Recorded P-t curves of hydraulic fracturing campaign in a railway tunnel

    图  3  微型压裂后的岩样照片

    Figure  3.  Photos of the rock specimen after the hydraulic fracturing tensile test

    图  4  不同尺寸空心岩柱测试结果统计图

    Figure  4.  Statistical histogram of hollow cylinder tests of different geometrical sizes

    图  5  三个主应力量值随深度变化图

    Figure  5.  Plot of three principal stresses versus depth

    表  1  水压致裂原地应力测量成果表

    Table  1.   Summary of hydraulic fracturing stress measurements

    深度
    /m
    PbPrPsP0TσHσhσVσH
    方向
    /MPa
    21.7~22.315.747.047.410.418.7014.787.4111.3980°
    23.7~24.315.308.478.570.436.8316.818.5711.4497°
    25.7~26.317.879.878.820.458.0016.148.8211.49
    27.7~28.319.888.719.300.4711.1718.729.3011.55
    29.7~30.316.697.758.390.498.9416.938.3911.60
    31.7~32.316.028.497.570.517.5313.717.5711.66
    39.7~40.313.398.469.690.594.9320.029.6911.87
    41.7~42.318.338.689.110.609.6518.059.1111.93
    下载: 导出CSV

    表  2  基于两种方法计算的水压致裂原地应力测量成果表

    Table  2.   Summary of hydraulic fracturing stress measurements based on two methods

    隧道内测试
    深度/m
    自然
    埋深/m
    σh/
    MPa
    σV/
    MPa
    σH1/
    MPa
    σH2/
    MPa
    平均差
    系数
    21.73~22.28422.017.4111.3914.7814.281%
    23.73~24.28424.018.5711.4416.8118.185%
    25.73~26.28426.018.8211.4916.1416.341%
    27.73~28.28428.019.3011.5518.7215.758%
    29.73~30.28430.018.3911.6016.9316.192%
    31.73~32.28432.017.5711.6613.7114.383%
    39.73~40.28440.019.6911.8720.0223.298%
    41.73~42.28442.019.1111.9318.0516.614%
    ①—基于公式(5)计算,Pr采用经典水压致裂法利用P-t曲线确定;②—基于公式(3)计算,岩石抗拉强度T采用空心岩柱液压致裂试验确定;③—平均差系数采用常用的统计学公式计算,以每个测试段的两个值σH1σH2为样本进行计算
    下载: 导出CSV
  • AMADEI B, STEPHANSSON O, 1997. Rock stress and its measurement[M]. Dordrecht: Springer.
    CHANG C D, JO Y, OH Y, et al., 2014. Hydraulic fracturing in situ stress estimations in a potential geothermal site, Seokmo Island, South Korea[J]. Rock Mechanics and Rock Engineering, 47(5): 1793-1808. doi: 10.1007/s00603-013-0491-7
    CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5): 853-865, doi: 10.12090/j.issn.1006-6616.2019.25.05.070. (in Chinese with English abstract)
    COVIELLO A, LAGIOIA R, NOVA R, 2005. On the measurement of the tensile strength of soft rocks[J]. Rock Mechanics and Rock Engineering, 38(4): 251-273. doi: 10.1007/s00603-005-0054-7
    CUISIAT F D, HAIMSON B C, 1992. Scale effects in rock mass stress measurements[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(2): 99-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=40cfdc0171e6a052312aa03354fab8df
    DANESHY A A, 1973. A study of inclined hydraulic fractures[J]. Society of Petroleum Engineers Journal, 13(2): 61-68. http://www.researchgate.net/publication/220010473_a_study_of_inclined_hydraulic_fractures
    HAIMSON B C, CORNET F H, 2003. ISRM suggested methods for rock stress estimation-part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1011-1020. doi: 10.1016/j.ijrmms.2003.08.002
    HAIMSON B C, ZHAO Z L, 1991. Effect of borehole size and pressurization rate on hydraulic fracturing breakdown pressure[C]//Proceedings of the the 32nd U.S. symposium on rock mechanics. Norman: American Rock Mechanics Association.
    HUDSON J A, 1970. A critical examination of indirect tensile strength tests for brittle rocks[D]. Minneapolis: University of Minnesota.
    HUDSON J A, HARDY M P, FAIRHURST C, 1973. The failure of rock beams: Part Ⅱ-Experimental studies[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 10(1): 69-82. http://d.old.wanfangdata.com.cn/Conference/WFHYXW629059
    Institute of China Seismological Bureau Crustal Stress, CRIEPI, 1999. Study on the formation and propagation of hydrostatic cracking[M]. Beijing: Earthquake Press. (in Chinese)
    Institute of Crustal Dynamics, China Earthquake Administration, 2013. "Data acquisition and processing code for hydraulic fracturing in-situ stress measurement system." Abbreviated as DADPC for HF: No. 2013SR122558[CP]. 2013-08-30[2013-11-09].
    ITO T, EVANS K, KAWAI K, et al., 1999. Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 36(6): 811-826. doi: 10.1016/S0148-9062(99)00053-4
    ITO T, IGARASHI A, KATO H, et al., 2006. Crucial effect of system compliance on the maximum stress estimation in the hydrofracturing method: Theoretical considerations and field-test verification[J]. Earth, Planets And Space, 58(8): 963-971. doi: 10.1186/BF03352601
    ITO T, SATOH T, KATO H, 2010. Deep rock stress measurement by hydraulic fracturing method taking account of system compliance effect[C]//Proceedings of ISRM international symposium on in-situ rock stress. Beijing: International Society for Rock Mechanics and Rock Engineering.
    JAEGER J C, COOK N G, ZIMMERMAN R W, 2007. Fundamentals of rock mechanics[M]. 4th ed. London: Wiley-Blackwell.
    PERRAS M A, DIEDERICHS M S, 2014. A review of the tensile strength of rock: concepts and testing[J]. Geotechnical and Geological Engineering, 32(2): 525-546. doi: 10.1007/s10706-014-9732-0
    TAN C X, ZHANG P, LU S L, et al., 2019. Significance and role of in-situ crustal stress measuring and real-time monitoring in earthquake prediction research[J]. Journal of Geomechanics, 25(5): 866-876, doi: 10.12090/j.issn.1006-6616.2019.25.05.071. (in Chinese with English abstract)
    WANG C H, 2014. Brief review and outlook of main estimate and measurement methods for in-situ stresses in rock mass[J]. Geological Review, 60(5): 971-996. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201405003
    WANG C H, SONG C K, XING B R, 2012. Compliance of drilling-rod system for hydro-fracturing in situ stress measurement and its effect on measurements at great depth[J]. Geoscience, 26(4): 808-816. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201204024
    WANG C H, WANG R T, WANG C Q, 2017. Development of multiple-diameter core hydraulic fracturing machine to test tensile strength of rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 36(S1): 3321-3331. (in Chinese with English abstract) http://www.researchgate.net/publication/320537052_Development_of_multiple-diameter_core_hydraulic_fracturing_machine_to_test_tensile_strength_of_rocks
    WANG C H, WANG X J, HOU Y H, et al., 2014-04-09. High-pressure fluid control panel for hydraulic fracturing in-situ stress measurement system: CN201320624928.8[P].
    WANG C H, WANG X J, MAO J Z, et al., 2016-01-22. Data acquisition instrument for hydraulic fracturing in-situ stress measurement system: CN201310471715.0[P].
    YAMASHITA F, MIZOGUCHI K, FUKUYAMA E, et al., 2010. Reexamination of the present stress state of the Atera fault system, central Japan, based on the calibrated crustal stress data of hydraulic fracturing tests obtained by measuring the tensile strength of rocks[J]. Journal of Geophysical Research, 115(B4): B04409.
    ZOBACK M D, POLLARD D D, 1978. Hydraulic fracture propagation and the interpretation of pressure-time records for in-situ stress determinations[C]//Proceedings of the 19th U.S. symposium on rock mechanics. Stateline, Reno: American Rock Mechanics Association: 14-22.
    陈群策, 孙东生, 崔建军, 等, 2019.雪峰山深孔水压致裂地应力测量及其意义[J].地质力学学报, 25(5): 853-865, doi: 10.12090/j.issn.1006-6616.2019.25.05.070.
    谭成轩, 张鹏, 路士龙, 等, 2019.原位地应力测量与实时监测在地震预报研究中的作用和意义[J].地质力学学报, 25(5): 866-876, doi: 10.12090/j.issn.1006-6616.2019.25.05.071.
    王成虎, 宋成科, 邢博瑞, 2012.水压致裂应力测量系统柔性分析及其对深孔测量的影响[J].现代地质, 26(4): 808-816. doi: 10.3969/j.issn.1000-8527.2012.04.024
    王成虎, 2014.地应力主要测试和估算方法回顾与展望[J].地质论评, 60(5): 971-996. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201405003
    王成虎, 王显军, 侯砚和, 等, 2014-04-09.水压致裂原地应力测量高压流体控制系统: CN201320624928.8[P].
    王成虎, 王显军, 包林海, 等, 2016-01-22.水压致裂法原地应力测量数据采集系统: CN201310471715.0[P].
    王成虎, 王仁涛, 王春权, 2017.多直径岩芯液压致裂岩石抗拉强度快速试验机研发[J].岩石力学与工程学报, 36(S1): 3321-3331. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2017S1023.htm
    中国地震局地壳应力研究所, 日本电力中央研究所, 1999.水压致裂裂缝的形成和扩展研究[M].北京:地震出版社.
    中国地震局地壳应力研究所, 2013.水压致裂原地应力测量数据采集与分析系统[简称: 水压致裂测试数采分析系统, V1.0]: 2013SR122558 [CP]. 2013-08-30[2013-11-09].
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  40
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-16
  • 修回日期:  2019-12-27
  • 刊出日期:  2020-04-28

目录

    /

    返回文章
    返回