留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于离散元方法对走滑拉分盆地演化及次级断裂扩展过程研究

刘源 KonietzkyHeinz

刘源, KonietzkyHeinz, 2019. 基于离散元方法对走滑拉分盆地演化及次级断裂扩展过程研究. 地质力学学报, 25 (5): 840-852. DOI: 10.12090/j.issn.1006-6616.2019.25.05.069
引用本文: 刘源, KonietzkyHeinz, 2019. 基于离散元方法对走滑拉分盆地演化及次级断裂扩展过程研究. 地质力学学报, 25 (5): 840-852. DOI: 10.12090/j.issn.1006-6616.2019.25.05.069
LIU Yuan, KONIETZKY Heinz, 2019. PARTICLE-BASED MODELING OF CRACK PROPAGATION DURING PULL-APART BASIN DEVELOPMENT. Journal of Geomechanics, 25 (5): 840-852. DOI: 10.12090/j.issn.1006-6616.2019.25.05.069
Citation: LIU Yuan, KONIETZKY Heinz, 2019. PARTICLE-BASED MODELING OF CRACK PROPAGATION DURING PULL-APART BASIN DEVELOPMENT. Journal of Geomechanics, 25 (5): 840-852. DOI: 10.12090/j.issn.1006-6616.2019.25.05.069

基于离散元方法对走滑拉分盆地演化及次级断裂扩展过程研究

doi: 10.12090/j.issn.1006-6616.2019.25.05.069
基金项目: 

国家自然科学基金 41902210

详细信息
    作者简介:

    刘源(1989-), 女, 讲师, 从事构造模拟和新构造研究, 首位获得德国VFG优秀博士论文奖(Kögler Special Award)的中国人。E-mail:lhmannely@sina.com

  • 中图分类号: P542

PARTICLE-BASED MODELING OF CRACK PROPAGATION DURING PULL-APART BASIN DEVELOPMENT

  • 摘要: 拉分盆地是一种与走滑断裂带密切相关的特殊拉张构造,因其重要的构造意义,及其与火山活动、中小地震群集、特殊的成矿作用间的伴生关系而受到研究者的高度重视。关于拉分盆地的形成演化过程,已有较多的研究成果,但是由于研究手段的限制,缺少对盆地演化中次级断裂扩展过程的研究。基于离散元的数值计算方法是研究断裂扩展方式的理想方法。本文采用基于离散元的颗粒流方法,揭示纯走滑拉分盆地发育过程中的断裂扩展和连接过程,为拉分盆地演化机理和断裂扩展提供新的研究方法。同时,根据主走滑断层与块体运动方向的夹角不同,建立不同的张扭性拉分盆地模型,系统研究张扭性盆地的断裂扩展和演化机理。将上述理论研究结果与死海盆地等经典拉分盆地实例相结合,探讨了死海盆地、土耳其Cinarcik盆地、哥伦比亚El Paraiso盆地等的形成演化机理和断裂扩展方式。

     

  • 图  1  纯走滑拉分盆地形成演化过程总结

    Figure  1.  Summary of previous models for pull-apart basin development

    图  2  二维颗粒流模型(PFC2D)示意图[35]

    a—PFC2D模型(其中Fault A和Fault B是预定义的初始主走滑断层,Circle C位于初始断裂形成点,Ball D为颗粒体D所在位置);b—放大的颗粒体连接方式示意图;c—a中黑框部分的放大图;d—颗粒体间正向接触力示意图;e—颗粒体间切向接触力示意图

    Figure  2.  Simplified sketch map of the PFC2D model[35]

    图  3  根据初始主断层几何学不同建立的三种纯走滑拉分盆地端元模型[35]

    Figure  3.  Pull-apart basin models with three representative initial strike-slip fault patterns[35]

    图  4  根据初始主断层运动学不同建立的三种拉分盆地模型

    Figure  4.  Pull-apart basin models with three different initial strike-slip fault kinematics

    图  5  三种纯走滑拉分盆地端元模型的断裂扩展和盆地演化过程[35]

    Figure  5.  Crack propagation and basin development for models with 30° underlapping, 90° non-overlapping, and 150° overlapping, respectively[35]

    图  6  三种纯走滑拉分盆地端元模型的最大主应力(σ1)与相对位移(εx*)关系图[35]

    Figure  6.  Major principal stress σ1 versus relative extension εx* for the three representative models[35]

    图  7  拉分盆地实例[35]

    a、b—哥伦比亚Algeciras断裂上纺锤状(El Paraiso盆地)、反Z型(Algeciras盆地)、菱形(Pitalito盆地)拉分盆地简图(改编自Velandia等[36]);c—基于SRTM digital elevation model的死海盆地简图(from https://www2.jpl.nasa.gov/srtm/; http://srtm.csi.cgiar.org/index.asp)

    Figure  7.  Examples of pull-apart basins in nature[35]

    图  8  三种纯走滑拉分盆地发育过程中的代表性节点及对盆地形成所需的最小位移和最小时间的估算示例[35]

    a—三种纯走滑拉分盆地发育过程中的代表性节点(Piont O:初始点;Point P:应力值达到峰值时(相对位移εx*≈0.035),初始断裂开始发育;Point Q:相对位移εx*约为0.155时,初始坳陷形成;Point M:介于P点和Q点之间的任一节点);b—最大主应力(σ1)与相对位移(εx*)曲线图;c—以El Paraiso盆地为例计算的此活动拉分盆地形成所需的最小位移和最小时间

    Figure  8.  Simplified sketch of the important evolution points during pull-apart basin development for the three models and the estimated maximum displacement and time for the El Paraiso basin calculated from the modeling results[35]

    图  9  纯走滑拉分盆地和张扭性拉分盆地的断裂扩展和盆地演化过程对比图[40]

    a—纯走滑模型; b—5°张扭性模型; c—10°张扭性模型

    Figure  9.  Comparison of crack propagation and basin development for pure strike slip model, 5° transtensional model, and 10° transtensional model[40]

    图  10  土耳其Marmara海走滑拉分盆地系统构造简图(改编自Armijo等[43])

    Figure  10.  Simplified structural map of pull-apart basins in the Marmara Sea, Turkey (after reference [43])

  • [1] FOSSEN H. Structural geology[M]. New York:Cambridge University Press, 2016:356-366.
    [2] MANN P, HEMPTON M R, BRADLEY D C, et al. Development of pull-apart basins[J]. The Journal of Geology, 1983, 91(5):529-554. doi: 10.1086/628803
    [3] AYDIN A, NUR A. Evolution of pull-apart basins and their scale independence[J]. Tectonics, 1982, 1(1):91-105. doi: 10.1029-TC001i001p00091/
    [4] BAHAT D. New aspects of rhomb structures[J]. Journal of Structural Geology, 1983, 5(6):591-601. doi: 10.1016/0191-8141(83)90071-8
    [5] GVRBVZ A. Geometric characteristics of pull-apart basins[J]. Lithosphere, 2010, 2(3):199-206. doi: 10.1130/L36.1
    [6] WU J E, MCCLAY K, WHITEHOUSE P, et al. 4D analogue modelling of transtensional pull-apart basins[J]. Marine and Petroleum Geology, 2009, 26(8):1608-1623. doi: 10.1016/j.marpetgeo.2008.06.007
    [7] DOOLEY T P, MCCLAY K. Analog modeling of pull-apart basins[J]. AAPG Bulletin, 1997, 81(11):1804-1826. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=04a344b90f82ee11de8faca9e711fd45
    [8] RAHE B, FERRILL D A, MORRIS A P. Physical analog modeling of pull-apart basin evolution[J]. Tectonophysics, 1998, 285(1-2):21-40. doi: 10.1016/S0040-1951(97)00193-5
    [9] CORTI G, DOOLEY T P. Lithospheric-scale centrifuge models of pull-apart basins[J]. Tectonophysics, 2015, 664:154-163. doi: 10.1016/j.tecto.2015.09.004
    [10] RODGERS D A. Analysis of pull-apart basin development produced by En echelon strike-slip faults[M]//BALANCE P E, READING H G. Sedimentation in Oblique-Slip Mobile Zones. Oxford: International Association of Sedimentologists Special Publication.
    [11] GÖLKE M, CLOETINGH S, FUCHS K. Finite-element modelling of pull-apart basin formation[J]. Tectonophysics, 1994, 240(1-4):45-57. doi: 10.1016/0040-1951(94)90263-1
    [12] KATZMAN R, TEN BRINK U S, LIN J. Three-dimensional modeling of pull-apart basins:Implications for the tectonics of the Dead Sea Basin[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B4):6295-6312. doi: 10.1029/94JB03101
    [13] PETRUNIN A, SOBOLEV S V. What controls thickness of sediments and lithospheric deformation at a pull-apart basin?[J]. Geology, 2006, 34(5):389-392. doi: 10.1130/G22158.1
    [14] VAN WIJK J, AXEN G, ABERA R. Initiation, evolution and extinction of pull-apart basins:Implications for opening of the Gulf of California[J]. Tectonophysics, 2017, 719-720:37-50. doi: 10.1016/j.tecto.2017.04.019
    [15] BURCHFIEL B C, STEWART J H. "Pull-apart" origin of the central segment of Death Valley, California[J]. GSA Bulletin, 1966, 77(4):439-442. doi: 10.1130/0016-7606(1966)77[439:POOTCS]2.0.CO;2
    [16] WRIGHT L A, OTTON J K, TROXEL B W. Turtleback surfaces of Death Valley viewed as phenomena of extensional tectonics[J]. Geology, 1974, 2(2):53-54. http://www.researchgate.net/publication/238422066_Turtleback_Surfaces_of_Death_Valley_Viewed_as_Phenomena_of_Extensional_Tectonics
    [17] LALLEMAND S, JOLIVET L. Japan Sea:a pull-apart basin?[J]. Earth and Planetary Science Letters, 1986, 76(3-4):375-389. doi: 10.1016/0012-821X(86)90088-9
    [18] DENG Q D, WU D N, ZHANG P Z, et al. Structure and deformational character of strike-slip fault zones[J]. Pure and Applied Geophysics, 1986, 124(1-2):203-223. doi: 10.1007/BF00875726
    [19] 邓起东, 张维岐, 张培震, 等.海原走滑断裂带及其尾端挤压构造[J].地震地质, 11(1):1-14. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ198901000.htm

    DENG Qidong, ZHANG Weiqi, ZHANG Peizhen, et al. Haiyuan strike-slip fault zone and its compressional structures of the end[J]. Seismology and Geology, 1989, 11(1):1-14. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DZDZ198901000.htm
    [20] ZHANG P Z, BURCHFIEL B C, CHEN S F, et al. Extinction of pull-apart basins[J]. Geology, 1989, 17(9):814-817. doi: 10.1130/0091-7613(1989)017<0814:EOPAB>2.3.CO;2
    [21] 国家地震局地质研究所, 宁夏回族自治区地震局.海原活动断裂带[M].北京:地震出版社, 1990:1-286.

    Institute of Geology, State Seismological Bureau (IG), and Seismological Bureau of Ningxia Hui Autonomous Province (SBNHAP). Haiyuan active fault[M]. Beijing:Seismological Press, 1990:1-286. (in Chinese)
    [22] OKAY A İ, KAŞLlar-ÖZCAN A, IMREN C, et al. Active faults and evolving strike-slip basins in the Marmara Sea, northwest Turkey:a multichannel seismic reflection study[J]. Tectonophysics, 2000, 321(2):189-218. doi: 10.1016/S0040-1951(00)00046-9
    [23] ITOH Y. A Miocene pull-apart deformation zone at the western margin of the Japan Sea back-arc basin:implications for the back-arc opening mode[J]. Tectonophysics, 2001, 334(3-4):235-244. doi: 10.1016/S0040-1951(01)00068-3
    [24] 施炜, 刘源, 刘洋, 等.青藏高原东北缘海原断裂带新生代构造演化[J].地学前缘, 2013, 20(4):1-17. http://d.old.wanfangdata.com.cn/Periodical/dxqy201304001

    SHI Wei, LIU Yuan, LIU Yang, et al. Cenozoic evolution of the Haiyuan fault zone in the northeast margin of the Tibetan Plateau[J]. Earth Science Frontiers, 2013, 20(4):1-17. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201304001
    [25] QUENNELL A M. The structural and geomorphic evolution of the Dead Sea rift[J]. Quarterly Journal of the Geological Society, 1958, 114(1-4):1-24. doi: 10.1144/gsjgs.114.1.0001
    [26] CROWELL J C. Origin of late Cenozoic basins in southern California[M]//DOTT R H, SHAVER R H. Modern and Ancient Geosynclinal Sedimentation. Tulsa, Okla.: SEPM, 1958: 292-303.
    [27] GARFUNKEL Z. Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics[J]. Tectonophysics, 1981, 80(1-4):81-108. doi: 10.1016/0040-1951(81)90143-8
    [28] KOIDE H, BHATTACHARJI S. Geometric patterns of active strike-slip faults and their significance as indicators for areas of energy release[M]//SAXENA S K, BHATTACHARJI S, ANNERSTEN H, et al. Energetics of Geological Processes. Berlin, Heidelberg: Springer, 1977: 46-66.
    [29] SMIT J, BRUN J P, CLOETINGH S, et al. Pull-apart basin formation and development in narrow transform zones with application to the Dead Sea Basin[J]. Tectonics, 2008, 27(6):TC6018. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b42a9f3ef8b7a54f1e05ab9f2e795b1
    [30] SUGAN M, WU J E L, MCCLAY K. 3D analogue modelling of transtensional pull-apart basins:comparison with the Cinarcik basin, Sea of Marmara, Turkey[J]. Bollettino di Geofisica Teorica ed Applicata, 2014, 55(4):599-716.
    [31] TEN BRINK U S, KATZMAN R, LIN J. Three-dimensional models of deformation near strike-slip faults[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B7):16205-16220. doi: 10.1029/96JB00877
    [32] BERTOLUZZA L, PEROTTI C R. A finite-element model of the stress field in strike-slip basins:implications for the Permian tectonics of the Southern Alps (Italy)[J]. Tectonophysics, 1997, 280(1-2):185-197. doi: 10.1016/S0040-1951(97)00140-6
    [33] Itasca. PFC2D (particle flow code in 2 dimensions) manual[M]. 4th ed. Minneapolis, Minnesota:ICG, 2004.
    [34] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47-65. doi: 10.1680/geot.1979.29.1.47
    [35] LIU Y, KONIETZKY H. Particle-based modeling of pull-apart basin development[J]. Tectonics, 2018, 37(1):343-358. doi: 10.1002/2017TC004685
    [36] VELANDIA F, ACOSTA J, TERRAZA R, et al. The current tectonic motion of the northern Andes along the Algeciras Fault System in SW Colombia[J]. Tectonophysics, 2005, 399(1-4):313-329. doi: 10.1016/j.tecto.2004.12.028
    [37] GARFUNKEL Z, BEN-AVRAHAM Z. The structure of the Dead Sea Basin[J]. Tectonophysics, 1996, 266(1-4):155-176. doi: 10.1016/S0040-1951(96)00188-6
    [38] BANDEL K, KHOURY H. Lithostratigraphy of the Triassic in Jordan[J]. Facies, 1981, 4(1):1-26. doi: 10.1007/BF02536584
    [39] FREUND R. The Hope fault:a strike-slip fault in New Zealand[J]. New Zealand Geological Survey Bulletin, 1971, 86:1-49.
    [40] LIU Y, KONIETZKY H. Particle-based modeling of transtensional pull-apart basins[J]. Tectonics, 2018, 37(12):4700-4713. doi: 10.1029/2018TC004973
    [41] FODOR L. From transpression to transtension:Oligocene-Miocene structural evolution of the Vienna basin and the East Alpine-Western Carpathian junction[J]. Tectonophysics, 1995, 242(1-2):151-182. doi: 10.1016/0040-1951(94)00158-6
    [42] HINSCH R, DECKER K, PERESSON H. 3-D seismic interpretation and structural modeling in the Vienna Basin:implications for Miocene to recent kinematics[J]. Austrian Journal of Earth Sciences, 2005, 97:38-50.
    [43] ARMIJO R, MEYER B, NAVARRO S, et al. Asymmetric slip partitioning in the Sea of Marmara pull-apart:A clue to propagation processes of the North Anatolian fault?[J]. Terra Nova, 2002, 14(2):80-86. doi: 10.1046/j.1365-3121.2002.00397.x
    [44] FLERIT F, ARMIJO R, KING G C P, et al. Slip partitioning in the Sea of Marmara pull-apart determined from GPS velocity vectors[J]. Geophysical Journal International, 2003, 154(1):1-7. doi: 10.1046/j.1365-246X.2003.01899.x
    [45] MCCLUSKY S, BALASSANIAN S, BARKA A, et al. Global positioning system constraints on plate kinematics and dynamics in the eastern mediterranean and caucasus[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B3):5695-5719. doi: 10.1029/1999JB900351
  • 加载中
图(10)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  70
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-02
  • 修回日期:  2019-10-07
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回