留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有限元方法的储层地应力修正研究

王金铎 孙鲁宁 王军 王敏 李静 刘旭亮 刘晨

王金铎, 孙鲁宁, 王军, 等, 2019. 基于有限元方法的储层地应力修正研究. 地质力学学报, 25 (3): 349-356. DOI: 10.12090/j.issn.1006-6616.2019.25.03.032
引用本文: 王金铎, 孙鲁宁, 王军, 等, 2019. 基于有限元方法的储层地应力修正研究. 地质力学学报, 25 (3): 349-356. DOI: 10.12090/j.issn.1006-6616.2019.25.03.032
WANG Jinduo, SUN Luning, WANG Jun, et al., 2019. RESEARCH ON THE GROUND STRESS CORRECTION OF RESERVOIRS BASED ON THE FINITE ELEMENT METHOD. Journal of Geomechanics, 25 (3): 349-356. DOI: 10.12090/j.issn.1006-6616.2019.25.03.032
Citation: WANG Jinduo, SUN Luning, WANG Jun, et al., 2019. RESEARCH ON THE GROUND STRESS CORRECTION OF RESERVOIRS BASED ON THE FINITE ELEMENT METHOD. Journal of Geomechanics, 25 (3): 349-356. DOI: 10.12090/j.issn.1006-6616.2019.25.03.032

基于有限元方法的储层地应力修正研究

doi: 10.12090/j.issn.1006-6616.2019.25.03.032
基金项目: 

国家科技重大专项 2016ZX05002-002

国家自然科学基金 41272141

详细信息
    作者简介:

    王金铎(1967-), 男, 博士, 高级工程师, 从事油气地质勘探研究与管理工作。E-mail:wangjinduo.slyt@sinopec.com

  • 中图分类号: TE311;P554

RESEARCH ON THE GROUND STRESS CORRECTION OF RESERVOIRS BASED ON THE FINITE ELEMENT METHOD

  • 摘要: 地应力是油气储层评价的基础参数,传统常用的单井地应力求解往往只依托于测井数据及岩石力学实验,未考虑整体力学模型中地层岩石非均质性对地应力的影响。研究以准噶尔盆地中部4区块董11井为例,采用整体力学模型分析的方法对目的储层地应力进行修正。根据地层岩石的物理性质及岩石力学参数对井场周围地区进行划分及整体三维建模,并用ANSYS有限元软件对其整体模型进行力学分析,从而对地应力计算结果进行修正,得出研究区目的层地应力分布情况。研究结果表明,修正后的地应力值与修正前的地应力值在地层薄弱(坚硬)层段水平最小主应力值相差16%~17%左右,水平最大主应力值相差22%~23%左右。修正后的地应力可以很好地体现地层在沉积过程中造成的岩石物理性质非均质性对地应力非均质性的影响,反映了储层地应力的真实变化特征。

     

  • 图  1  研究区位置图

    Figure  1.  Location map of the research area

    图  2  董11井4050~4100 m井段的测井数据

    Figure  2.  Logging data of well section at 4050 m~4100 m of the well Dong 11

    图  3  计算模型

    Figure  3.  Computational model

    图  4  计算模型最小主应力分布云图

    MN—应力最小值点;MX—应力最大值点

    Figure  4.  Nephogram of minimum principal stress distribution in the computational model

    图  5  计算模型最大主应力分布云图

    MN—应力最小值点;MX—应力最大值点

    Figure  5.  Nephogram of maximum principal stress distribution in the computational model

    图  6  井场内部最小主应力分布云图

    MN—应力最小值点;MX—应力最大值点

    Figure  6.  Nephogram of minimum principal stress distribution in the well site

    图  7  井场内部最大主应力分布云图

    MN—应力最小值点;MX—应力最大值

    Figure  7.  Nephogram of maximum principal stress distribution in the well site

    图  8  模型4880~5025 m深度中心轴线上修正前后的最大、最小水平主应力曲线图

    Figure  8.  Maximum and minimum horizontal principal stress curves before and after correction on the center axis of themodel from 4880 m to 5025 m

    表  1  董11井原始测井数据

    Table  1.   Original logging data of the well Dong 11

    层号 顶界深度/m 底界深度/m 层厚/m 纵波时差/(μs/ft) 密度/(g/cm3) 结论
    1 4881.7 4883.1 1.4 62.69 2.46 干层
    2 4896.5 4904.6 8.1 60.48 2.36 含油水层
    3 4948.2 4950.1 1.9 60.22 2.41 干层
    4 4960 4962.1 2.1 60.64 2.22 干层
    5 4969.6 4970.6 1 64.28 2.13 干层
    6 4980.9 4989.3 8.4 61.5 2.37 差油层
    7 4993.2 5011.6 18.4 59.87 2.26 含油水层
    8 5012.5 5019.2 6.7 60.66 2.39 含油水层
    9 5020.9 5027.9 7 61.13 2.39 干层
    下载: 导出CSV

    表  2  董11井地层岩石物理参数及地应力计算结果

    Table  2.   Calculation results of formation rock physical parameters and ground stress of the well Dong 11

    层号 横波时差/(μs/ft) 泊松比 杨氏模量/MPa 静态泊松比 静态杨氏模量/MPa 垂向应力/MPa 水平最大主应力/MPa 水平最小主应力/MPa
    1 123.242209 0.325465 39925.5 0.207738 30865.54 112.2952 134.2244 103.3246
    2 122.771372 0.339779 39013.7 0.211307 30199.91 112.71265 135.7413 104.0711
    3 120.249713 0.332629 41307.1 0.209524 31874.06 113.83045 136.9144 104.782
    4 129.550533 0.359714 33449.4 0.216277 26137.97 114.10415 138.0337 106.2004
    5 142.575909 0.37244 26745.3 0.219449 21243.94 114.3123 137.7953 107.2011
    6 124.423321 0.33835 38104.9 0.210951 29536.48 114.6573 137.7719 105.9069
    7 125.946987 0.354034 35878 0.214861 27910.86 115.0552 139.2071 106.7745
    8 121.915141 0.335491 39938.3 0.210238 30874.87 115.36455 138.7411 106.3589
    9 122.859752 0.335491 39326.5 0.210238 30428.27 115.5612 138.8552 106.5873
    下载: 导出CSV
  • [1] JIU K, DING W L, HUANG W H, et al. Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression, Bohai Bay Basin, east China[J]. Journal of Petroleum Science and Engineering, 2013, 110:119-131. doi: 10.1016/j.petrol.2013.09.002
    [2] LIAN P Q, CHENG L S, DENG B Z. Simulation of ground stress field and fracture anticipation with effect of pore pressure[J]. Theoretical and Applied Fracture Mechanics, 2011, 56(1):34-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7517fd2ebff18d1b76f0a6d7e0309347
    [3] 钟城, 秦启荣, 周吉羚, 等.现今地应力对富有机质页岩断层封闭性的研究——以川东南丁山地区龙马溪组为例[J].地质力学学报, 2018, 24(4):452-464. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180402&journal_id=dzlxxb

    ZHONG Cheng, QIN Qirong, ZHOU Jiling, et al.Study on fault sealing of organic-rich shale by present stress:a case study of Longmaxi Formation in Dingshan Area, Southeast Sichuan[J]., 2018, 24(4):452-464.(in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180402&journal_id=dzlxxb
    [4] 杨红, 许亮, 何衡, 等.利用测井、压裂资料求取储层地应力的方法[J].断块油气田, 2014, 21(4):509-512. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201404024

    YANG Hong, XU Liang, HE Heng, et al. Method for obtaining ground stress of reservoir using logging and fracturing data[J]. Fault-Block Oil and Gas Field, 2014, 21(4):509-512. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dkyqt201404024
    [5] 余雄鹰, 王越之, 李自俊.声波法计算水平主地应力值[J].石油学报, 1996, 17(3):59-63. doi: 10.3321/j.issn:0253-2697.1996.03.009

    YU Xiongying, WANG Yuezhi, LI Zijun. Calculation of horizontal principal in-situ stress with acoustic wave method[J]. Acta Petrolei Sinica, 1996, 17(3):59-63. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-2697.1996.03.009
    [6] 李静, 查明, 刘振.基于声波测井资料的地应力分布研究——以饶阳凹陷任北奥陶系潜山为例[J].岩土力学, 2011, 32(9):2765-2770. doi: 10.3969/j.issn.1000-7598.2011.09.034

    LI Jing, ZHA Ming, LIU Zhen. Research on crustal stress distribution based on acoustic logging data——Taking North Region of Renqiu Ordovician Buried Hill of Raoyang Depression for example[J]. Rock and Soil Mechanics, 2011, 32(9):2765-2770. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.09.034
    [7] 闫萍.利用测井资料计算地应力及其在山前构造带的应用研究[D].青岛: 中国石油大学(华东), 2007. http://book.hzu.edu.cn/795949.html

    YAN Ping. The earth stress calculation using well logging data and its applied research in piedmont structure[D]. Qingdao: China University of Petroleum, 2007. (in Chinese with English abstract) http://book.hzu.edu.cn/795949.html
    [8] 闫萍, 孙建孟, 苏远大, 等.利用测井资料计算新疆迪那气田地应力[J].新疆石油地质, 2006, 27(5):611-614. doi: 10.3969/j.issn.1001-3873.2006.05.030

    YAN Ping, SUN Jianmeng, SU Yuanda, et al. The earth stress calculation using well logging data in Dina gas field of Xinjiang[J]. Xinjiang Petroleum Geology, 2006, 27(5):611-614. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-3873.2006.05.030
    [9] 冉利民.镇泾油田地应力研究及其应用[D].武汉: 中国地质大学, 2014.

    RAN Limin. The study of formation stress and its application in the Zhenjing Oil field[D]. Wuhan: China University of Geosciences, 2014. (in Chinese with English abstract)
    [10] 张景和, 刘翔鄂, 刘勇谦.利用岩石声发射Kaiser效应测地应力的新方法[J].岩石力学与工程学报, 1987, 6(4):347-356. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198704005.htm

    ZHANG Jinghe, LIU Xiange, LIU Yongqian. A new method for gauging Geostress in rock by Kaiser's effect of acoustic emission[J]. Chinese Journal of Rock Mechanics and Engineering, 1987, 6(4):347-356. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198704005.htm
    [11] 鲍洪志, 孙连环, 于玲玲, 等.利用岩石声发射Kaiser效应求取地应力[J].断块油气田, 2009, 16(6):94-96. http://d.old.wanfangdata.com.cn/Periodical/dkyqt200906030

    BAO Hongzhi, SUN Lianhuan, YU Lingling, et al. Obtainment of ground stress by Kaiser effect of rock acoustic emission[J]. Fault-Block Oil and Gas Field, 2009, 16(6):94-96. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dkyqt200906030
    [12] 杨秀娟, 张敏, 闫相祯.基于声波测井信息的岩石弹性力学参数研究[J].石油地质与工程, 2008, 22(4):39-42. doi: 10.3969/j.issn.1673-8217.2008.04.013

    YANG Xiujuan, ZHANG Min, YAN Xangzhen. Study on acoustic logging-based rock elasticity parameters[J]. Petroleum Geology and Engineering, 2008, 22(4):39-42. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-8217.2008.04.013
    [13] YIN S, ZHOU W, SHAN Y M, et al. Assessment of the geostress field of deep-thick gypsum cap rocks:A case study of Paleogene Formation in the southwestern Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2017, 154:76-90. doi: 10.1016/j.petrol.2017.04.021
    [14] 秦向辉, 谭成轩, 孙进忠, 等.地应力与岩石弹性模量关系试验研究[J].岩土力学, 2012, 33(6):1690-1695. http://d.old.wanfangdata.com.cn/Periodical/ytlx201206014

    QIN Xianghui, TAN Chengxuan, SUN Jinzhong, et al. Experimental study of relation between in-situ crustal stress and rock elastic modulus[J]. Rock and Soil Mechanics, 2012, 33(6):1690-1695. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ytlx201206014
    [15] 刘之的, 夏宏泉, 陈平.岩石泊松比的测井计算方法研究[J].测井技术, 2004, 28(6):508-510. doi: 10.3969/j.issn.1004-1338.2004.06.010

    LIU Zhidi, XIA Hongquan, CHEN Ping. On calculating method of the rock Poisson ratio using well logging data[J]. Well Logging Technology, 2004, 28(6):508-510. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-1338.2004.06.010
    [16] 李静, 刘震, 张媛, 等.基于多元线性回归方法的地应力研究[J].科学技术与工程, 2010, 10(25):6163-6165, 6171. doi: 10.3969/j.issn.1671-1815.2010.25.010

    LI Jing, LIU Zhen, ZHANG Yuan, et al. The research of crustal stress distribution by using multivariate linear regression[J]. Science Technology and Engineering, 2010, 10(25):6163-6165, 6171. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2010.25.010
    [17] 孙连环, 鲍洪志, 杨顺辉.准噶尔盆地中部区块地应力求取研究[J].石油钻探技术, 2007, 35(2):18-20. doi: 10.3969/j.issn.1001-0890.2007.02.006

    SUN Lianhuan, BAO Hongzhi, YANG Shunhui. Investigation of terrestrial stress in middle Zhunger basin[J]. Petroleum Drilling Techniques, 2007, 35(2):18-20. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-0890.2007.02.006
    [18] 闫相祯, 王保辉, 杨秀娟, 等.确定地应力场边界载荷的有限元优化方法研究[J].岩土工程学报, 2010, 32(10):1485-1490. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201010002

    YAN Xiangzhen, WANG Baohui, YANG Xiujuan, et al. Finite element optimization method of boundary load of in-situ stress field[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10):1485-1490. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201010002
    [19] 侯明勋, 葛修润.三维地应力计算模型研究[J].岩土力学, 2007, 28(10):2017-2021. doi: 10.3969/j.issn.1000-7598.2007.10.002

    HOU Mingxun, GE Xiurun. Study on a calculation model for 3D in-situ rock stress tensor[J]. Rock and Soil Mechanics, 2007, 28(10):2017-2021. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2007.10.002
    [20] 刘爱华, 杨清, 吴均平. ANSYS三维地应力场数值模拟方法应用研究[J].地质力学学报, 2013, 19(2):133-142. doi: 10.3969/j.issn.1006-6616.2013.02.003

    LIU Aihua, YANG Qing, WU Junping. A practical ANSYS 3-D numerical simulation method for in-situ stress field[J]. Journal of Geomechanics, 2013, 19(2):133-142. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2013.02.003
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  87
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-14
  • 修回日期:  2019-01-04
  • 刊出日期:  2019-06-28

目录

    /

    返回文章
    返回