留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新疆伊宁县喀拉亚尕奇滑坡动力学特征研究

杨龙伟 魏云杰 王文沛 朱赛楠 张楠

杨龙伟, 魏云杰, 王文沛, 等, 2018. 新疆伊宁县喀拉亚尕奇滑坡动力学特征研究. 地质力学学报, 24 (5): 699-705. DOI: 10.12090/j.issn.1006-6616.2018.24.05.071
引用本文: 杨龙伟, 魏云杰, 王文沛, 等, 2018. 新疆伊宁县喀拉亚尕奇滑坡动力学特征研究. 地质力学学报, 24 (5): 699-705. DOI: 10.12090/j.issn.1006-6616.2018.24.05.071
YANG Longwei, WEI Yunjie, WANG Wenpei, et al., 2018. RESEARCH ON DYNAMIC CHARACTERISTICS OF THE KALAYAGAQI LANDSLIDE IN YINING COUNTRY, XINJIANG. Journal of Geomechanics, 24 (5): 699-705. DOI: 10.12090/j.issn.1006-6616.2018.24.05.071
Citation: YANG Longwei, WEI Yunjie, WANG Wenpei, et al., 2018. RESEARCH ON DYNAMIC CHARACTERISTICS OF THE KALAYAGAQI LANDSLIDE IN YINING COUNTRY, XINJIANG. Journal of Geomechanics, 24 (5): 699-705. DOI: 10.12090/j.issn.1006-6616.2018.24.05.071

新疆伊宁县喀拉亚尕奇滑坡动力学特征研究

doi: 10.12090/j.issn.1006-6616.2018.24.05.071
基金项目: 

中国地质调查局地质调查项目 DD20179609

中央高校基本科研业务费资助项目 300102218118

国家自然科学基金青年基金 41602362

详细信息
    作者简介:

    杨龙伟(1992-), 男, 在读博士, 主要从事工程地质与地质灾害防治研究工作。E-mail:yang0504@chd.edu.cn

    通讯作者:

    魏云杰(1973-), 男, 博士, 教授级高工, 主要从事地质灾害与岩土工程等相关方面的研究。E-mail:wyj1973@126.com

  • 中图分类号: P642

RESEARCH ON DYNAMIC CHARACTERISTICS OF THE KALAYAGAQI LANDSLIDE IN YINING COUNTRY, XINJIANG

  • 摘要: 通过对高速远程黄土滑坡动力学特征的研究,提出黄土高速远程滑坡空间预测的模拟方法。以新疆伊宁县喀拉亚尕奇黄土滑坡为例,基于野外地质调查和无人机航拍影像图,结合滑坡研究区的工程地质条件,分析了该滑坡的基本特征和形成条件。研究发现,该滑坡的主要诱发因素是冰雪融水入渗,其孕灾模式主要为四个阶段:后缘拉裂阶段,黄土节理冻胀扩展阶段,融雪入渗失稳阶段,高速下滑阶段。同时利用Rapid模型对滑坡运动全过程进行模拟,计算得到滑坡运动持续时间为26 s,最大运动速度达到22 m/s,堆积体的平均厚度达到5 m等运动特征要素,结果表明Rapid模型可以较好的模拟分析黄土高速远程滑坡动力学效应,为黄土地区类似滑坡的成灾机理和动力学效应分析提供参考。

     

  • 图  1  喀拉亚尕奇滑坡地理位置图[15]

    Figure  1.  Location of the Kalayagaqi landslide

    图  2  滑坡工程地质剖面图

    Figure  2.  Engineering geological section of the Kalayagaqi landslide

    图  3  皮里青河流域滑坡分布示意图

    Figure  3.  Schematic diagram of landslide distribution in the Piliqing River Basin

    图  4  滑坡全景及典型照片

    Figure  4.  The panorama and typical photos of the Kalayagaqi landslide

    图  5  滑体运动加载作用示意图[11]

    Fd-下滑力;hw/h0-初始地下水位/加载后地下水位;Δh-加载滑体厚度;W-滑体重量;Δτd-滑体所受切应力;Δσd-滑体所受正应力;α-坡角

    Figure  5.  The schematic diagram of motion loading of the landslide[11]

    图  6  滑体平均速度随时间变化图

    Figure  6.  Variation figure of average velocity of the landslide with time

    图  7  不同时刻滑坡堆积形态变化图

    Figure  7.  Variation diagram of landslide accumulation form at different time

    图  8  滑体前后缘运动速度图

    Figure  8.  Velocity chart of the front and the rear edge of the landslide

    图  9  堆积体剖面形态变化图

    Figure  9.  Variation diagram of the accumulation body profile

    图  10  堆积体厚度变化图

    Figure  10.  Variation diagram of the accumulation body thickness

    表  1  喀拉亚尕奇滑坡Rapid模型参数

    Table  1.   Parameters of Rapid model of the Kalayagaqi landslide

    区域 容重(γ/KN·m-3) 有效摩擦角ϕ 孔压系数Bss 剪切抗力(τss/kPa) 侧向土压力系数k
    滑源区 18 12 0.95 6 0.48
    堆积区 18 12 0.81 45 0.54
    下载: 导出CSV
  • [1] Heim A. Bergsturz und menschenleben[M]. Zurich:Fretz & Wasmuth Verlag, 1932:218.
    [2] Genevois R, Ghirotti M. The 1963 vaiont landslide[J]. Giornale di Geologia Applicata, 2005, 1(1):41~52. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_982117299f6f8eadc7220abd1fe96bf7
    [3] Bartelt P, Salm B, Gruber U. Calculating dense-snow avalanche runout using a voellmy-fluid model with active/passive longitudinal straining[J]. Journal of Glaciology, 1999, 45(150):242~254. doi: 10.1017/S002214300000174X
    [4] Savage S B, Hutter K. The dynamics of avalanches of granular materials from initiation to runout. Part Ⅰ:analysis[J]. Acta Mechanica, 1991, 86(1~4):201~223. doi: 10.1007/BF01175958
    [5] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47~65. doi: 10.1680/geot.1979.29.1.47
    [6] Voight B, Sousa J. Lessons from Ontake-san:A comparative analysis of debris avalanche dynamics[J]. Engineering Geology, 1994, 38(3~4):261~297. doi: 10.1016/0013-7952(94)90042-6
    [7] Melin S. Simulation of sound propagation in granular media on the connection machine[J]. International Journal of Modern Physics C, 1993, 4(6):1103~1107.(请核对年份) doi: 10.1142/S0129183193000859
    [8] Pudasaini S P, Hsiau S S, Wang Y Q, et al. Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions[J]. Physics of Fluids, 2005, 17(9):093301. doi: 10.1063/1.2007487
    [9] Gao Y, Yin Y P, Li B, et al. Investigation and dynamic analysis of the long runout catastrophic landslide at the Shenzhen landfill on December 20, 2015, in Guangdong, China[J]. Environmental Earth Sciences, 2017, 76(1):13. doi: 10.1007/s12665-016-6332-8
    [10] Xing A G, Yuan X Y, Xu Q, et al. Characteristics and numerical runout modelling of a catastrophic rock avalanche triggered by the Wenchuan earthquake in the Wenjia valley, Mianzhu, Sichuan, China[J]. Landslides, 2016, 14(1):83~98.
    [11] Sassa K, Nagai O, Solidum R, et al. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide[J]. Landslides, 2010, 7(3):219~236. doi: 10.1007/s10346-010-0230-z
    [12] Yin Y P, Li B, Wang W P, et al. Mechanism of the December 2015 Catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J]. Engineering, 2016, 2(2):230~249. doi: 10.1016/J.ENG.2016.02.005
    [13] 沈伟, 翟张辉, 李同录, 等.陕西泾河南岸大堡子高速远程黄土滑坡运动过程模拟[J].工程地质学报, 2016, 24(6):1309~1317. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201606038

    SHEN Wei, ZHAI Zhanghui, LI Tonglu, et al. Simulation of propagation process for the Dabaozi Rapid long run-out loess landslide in the south bank of the Jinghe river, Shaanxi province[J]. Journal of Engineering Geology, 2016, 24(6):1309~1317. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201606038
    [14] 翟张辉, 沈伟, 李同录, 等.天水市大沟滑坡-泥石流运动过程模拟分析[J].工程地质学报, 2017, 25(S1):400~406.

    ZHAI Zhanghui, SHEN Wei, LI Tonglu, et al. Analysis and simulation of the landslide-debris flow hazard in Dagou village, Tianshui city[J]. Journal of Engineering Geology, 2017, 25(S1):400~406. (n Chinese with English abstract
    [15] 刘丽楠, 李守定, 姜越, 等.新疆伊犁加朗普特黄土滑坡泥石流降雨诱发机理[J].工程地质学报, 2017, 25(5):1230~1237. http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201705007

    LIU Li'nan, LI Shouding, JIANG Yue, et al. Failure mechanism of loess landslides due to saturatedunsaturated seepage——case study of Gallente landslide in ILI, Xinjiang[J]. Journal of Engineering Geology, 2017, 25(5):1230~1237. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201705007
    [16] 庄茂国, 魏云杰, 邵海, 等.新疆伊犁皮里青河黄土滑坡类型及其发育特征[J].中国地质灾害与防治学报, 2018, 29(1):54~59. http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201801009

    ZHUANG Maoguo, WEI Yunjie, SHAO Hai, et al. Type and characteristics of loess landslides in Piliqing river, in Yili of Xinjiang Uygur Autonomous Region[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(1):54~59. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/zgdzzhyfzxb201801009
    [17] Okada Y, Sassa K, Fukuoka H. Liquefaction and the steady state of weathered granitic sands obtained by undrained ring shear tests:a fundamental study of the mechanism of liquidized landslides[J]. Journal of Natural Disaster Science, 2000, 22(2):75~85. doi: 10.2328/jnds.22.75
    [18] Wang F W, Sassa K. Landslide simulation by a geotechnical model combined with a model for apparent friction change[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2010, 35(3~5):149~161. doi: 10.1016/j.pce.2009.07.006
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  126
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-28
  • 修回日期:  2018-08-03
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回