留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大地震前后实测地应力状态变化及其意义——以龙门山断裂带为例

秦向辉 陈群策 孟文 谭成轩 张重远 丰成君

秦向辉, 陈群策, 孟文, 等, 2018. 大地震前后实测地应力状态变化及其意义——以龙门山断裂带为例. 地质力学学报, 24 (3): 309-320. DOI: 10.12090/j.issn.1006-6616.2018.24.03.033
引用本文: 秦向辉, 陈群策, 孟文, 等, 2018. 大地震前后实测地应力状态变化及其意义——以龙门山断裂带为例. 地质力学学报, 24 (3): 309-320. DOI: 10.12090/j.issn.1006-6616.2018.24.03.033
QIN Xianghui, CHEN Qunce, MENG Wen, et al., 2018. EVALUATING MEASURED IN-SITU STRESS STATE CHANGES ASSOCIATED WITH EARTHQUAKES AND ITS IMPLICATIONS: A CASE STUDY IN THE LONGMENSHAN FAULT ZONE. Journal of Geomechanics, 24 (3): 309-320. DOI: 10.12090/j.issn.1006-6616.2018.24.03.033
Citation: QIN Xianghui, CHEN Qunce, MENG Wen, et al., 2018. EVALUATING MEASURED IN-SITU STRESS STATE CHANGES ASSOCIATED WITH EARTHQUAKES AND ITS IMPLICATIONS: A CASE STUDY IN THE LONGMENSHAN FAULT ZONE. Journal of Geomechanics, 24 (3): 309-320. DOI: 10.12090/j.issn.1006-6616.2018.24.03.033

大地震前后实测地应力状态变化及其意义——以龙门山断裂带为例

doi: 10.12090/j.issn.1006-6616.2018.24.03.033
基金项目: 

国家自然科学基金项目 41702351

国家科技重大专项 2016ZX05034-003

中国地质调查局项目 121201104000150003

详细信息
    作者简介:

    秦向辉(1984-), 男, 助理研究员, 博士, 主要从事地应力测量与监测、构造应力场等研究工作。E-mail:qinxiangh03@126.com

  • 中图分类号: P553

EVALUATING MEASURED IN-SITU STRESS STATE CHANGES ASSOCIATED WITH EARTHQUAKES AND ITS IMPLICATIONS: A CASE STUDY IN THE LONGMENSHAN FAULT ZONE

  • 摘要: 实测地应力状态在连续地震事件前后的变化特征,对于应用地应力实测数据探索开展地震预报等研究有重要意义,但一直以来缺少典型实例研究。以龙门山断裂带西南段的跷碛和映秀地区为研究区,利用该地区汶川地震前至芦山地震后获得的地应力实测数据,分析了表征地应力状态的特征参数在汶川和芦山地震事件前后变化特征,探讨了其对地震预报研究的意义。研究表明,跷碛地区地应力状态特征参数KHVKHhμm变化表现为芦山地震后值(QQ-14)大于汶川地震前(QQ-99),QQ-99结果大于汶川地震后值(QQ-09),而主应力梯度系数变化为QQ-09>QQ-14>QQ-99;分析认为KHVKHhμm变化规律能准确反映汶川和芦山地震事件前后跷碛地区构造应力场演化特征,而仅用主应力随深度变化梯度系数变化特征,不能完全准确地反映构造应力场调整变化情况;映秀地区,除KHh外,主应力随深度变化梯度系数、KHVμm均表现为汶川地震后结果大于震前,其变化反映的应力场调整变化特征需要补充数据检验;利用地应力状态参数变化规律开展地震预报探索研究时,长期的、可对比的高质量地应力测量数据是研究有所突破的关键。研究成果对于龙门山地区构造应力场和减灾防灾研究有重要意义,对于应用地应力数据探索开展地震预报研究等有参考价值。

     

  • 图  1  龙门山及邻区区域地质简图

    Figure  1.  Geological sketch map of the Longmenshan and adjacent regions

    图  2  硗碛地区地质构造与地应力钻孔分布图(据文献[19]修改)

    F1—映秀—北川断裂;F2—汶川—茂县断裂;F3—盐井—五龙断裂;F4—双石—大川断裂;F5—大邑断裂

    Figure  2.  Local geological map of Qiaoqi region showing locations of boreholes used in this study (modified after [19])

    图  3  映秀地区地质构造与地应力钻孔分布图(据文献[35]修改)

    F1—汶川—茂县断裂;F2—映秀—北川断裂;F3—灌县—安县断裂;F4—关口隐伏断裂;F5—彭县隐伏断裂

    Figure  3.  Local geological map of Yingxiu region showing locations of boreholes used in this study (modified after [35])

    图  4  硗碛地区汶川—芦山地震前后主应力及特征参数随深度变化图

    a—主应力随深度分布特征;b—KHV分布特征;c—KHh分布特征;d—μm分布特征

    Figure  4.  Variation of principal stress and characteristic parameters with depth before and after the Wenchuan-lushan earthquake in Qiaoqi area

    图  5  映秀地区汶川地震前后主应力及特征参数随深度变化图

    a—主应力随深度分布特征;b—KHV分布特征;c—KHh分布特征;d—μm分布特征

    Figure  5.  Variation of principal stress and characteristic parameters with depth before and after the Wenchuan earthquake in Yingxiu area

    表  1  硗碛地区地应力数据

    Table  1.   In-situ stress data obtained in Qiaoqi region

    钻孔 深度/m SH/MPa Sh/MPa Sv/MPa SH方向/(°) KHV KHh μm
    QQ-99[11] 180.25 15.42 8.28 4.77 3.23 1.86 0.53
    187.55 14.44 8.19 4.96 N57°E 2.91 1.76 0.49
    224.44 20.86 11.61 5.49 N63°E 3.80 1.80 0.58
    233.29 18.07 11.11 6.18 N1°W 2.92 1.63 0.49
    241.15 8.97 5.68 6.38 1.41 1.58 0.22
    250.33 19.74 10.80 6.63 N55°E 2.98 1.83 0.50
    259.10 21.38 11.68 6.86 3.12 1.83 0.51
    264.37 7.65 5.39 7.00 N22°E 1.09 1.42 0.17
    275.07 11.90 6.41 7.28 1.63 1.86 0.30
    280.46 25.53 13.53 7.42 N39°E 3.44 1.89 0.55
    QQ-09[29] 80.50 5.25 4.15 2.13 2.46 1.27 0.42
    117.50 6.66 5.22 3.11 2.14 1.28 0.36
    135.00 5.25 4.73 3.58 1.47 1.11 0.19
    167.00 5.47 5.09 4.43 1.23 1.07 0.11
    174.50 13.06 9.51 4.62 N49°W 2.83 1.37 0.48
    192.07 15.27 12.09 5.09 N60°W 3.00 1.26 0.50
    201.27 18.63 13.13 5.33 3.50 1.42 0.56
    214.37 23.73 14.78 5.68 4.18 1.61 0.61
    QQ-14[19] 128.00 21.93 11.18 3.39 N85°W 6.47 1.96 0.73
    136.00 19.60 10.47 3.60 N63°W 5.44 1.87 0.69
    159.00 21.97 11.71 4.21 5.22 1.88 0.68
    182.00 25.83 18.47 4.82 N73°W 5.36 1.40 0.69
    188.00 21.02 11.51 4.98 4.22 1.83 0.62
    注: SHSh分别为实测最大、最小水平主应力,SV为垂向应力,按照等于上覆岩层重度计算,岩石平均密度取2.65 g/cm3
    下载: 导出CSV

    表  2  映秀地区地应力数据

    Table  2.   In-situ stress data obtained in Yingxiu region

    钻孔 深度/m SH/MPa Sh/MPa Sv/MPa SH方向/(°) KHV KHh μm
    YX-02[17] 246.70 7.47 4.57 6.67 1.12 1.63 0.24
    300.00 12.55 7.20 8.11 1.55 1.74 0.27
    354.20 13.80 8.10 9.58 1.44 1.70 0.26
    422.20 16.58 9.83 11.41 N47°W 1.45 1.69 0.26
    476.20 20.62 12.12 12.87 1.60 1.70 0.26
    611.40 19.17 12.42 16.51 N54°W 1.16 1.54 0.21
    677.10 21.23 13.43 18.29 1.16 1.58 0.23
    705.70 26.36 16.16 19.07 N53°W 1.38 1.63 0.24
    733.20 28.04 17.14 19.81 1.42 1.64 0.24
    YX-09[11] 90.00 3.48 2.60 2.39 1.46 1.34 0.19
    128.00 8.34 7.44 3.39 2.46 1.12 0.42
    142.00 7.81 5.95 3.76 N56°W 2.08 1.31 0.35
    171.00 15.62 11.81 4.53 3.45 1.32 0.55
    178.00 16.36 9.68 4.72 3.47 1.69 0.55
    185.00 13.11 8.35 4.90 2.68 1.57 0.46
    注: 表 2符号意义同表 1
    下载: 导出CSV

    表  3  硗碛地区主应力随深度变化拟合结果

    Table  3.   Fitting results of in-situ stress data versus depth in Qiaoqi region

    钻孔 主应力随深度分布拟合结果 深度范围 地应力结构 SH平均方向
    SH Sh
    QQ-99 SH=0.019D+11.85 Sh=0.01D+6.49 0~300 m 逆冲型 N47°E
    QQ-09 SH=0.131D-9.26 Sh=0.083D-4.69 0~250 m 逆冲型 N55°W
    QQ-14 SH=0.041D+15.57 Sh=0.069D+1.77 0~200 m 逆冲型 N59°W
    下载: 导出CSV

    表  4  映秀地区主应力随深度变化拟合结果

    Table  4.   Fitting results of in-situ stress data versus depth in Yingxiu region

    钻孔 主应力随深度分布拟合结果 深度范围 地应力结构 SH平均方向
    SH Sh
    YX-02 SH=0.034D+1.49 Sh=0.022D+0.23 0~800 m 走滑型 N51°W
    YX-09 SH=0.130D-8.54 Sh=0.074D-3.43 0~200 m 逆冲型 N56°W
    下载: 导出CSV
  • [1] Harris R A. Introduction to special section:stress triggers, stress shadows, and implications for seismic hazard[J]. Journal of Geophysical Research, 1998, 103(B10):24347~24358. doi: 10.1029/98JB01576
    [2] Stein R S. The role of stress transfer in earthquake occurrence[J]. Nature, 1999, 402(6762):605~609. doi: 10.1038/45144
    [3] Scholz C H. The mechanics of earthquakes and faulting[M]. Cambridge:Cambridge University Press, 2002.
    [4] Steacy S, Gomberg J, Cocco M. Introduction to special section:stress transfer, earthquake triggering, and time-dependent seismic hazard[J]. Journal of Geophysical Research, 2005, 110(B5):B005S01, doi: 10.1029/2005JB003692.
    [5] 石耀霖, 张贝, 张斯奇, 等.地震数值预报[J].物理, 2013, 42(4):237~255. http://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201304003.htm

    SHI Yaolin, ZHANG Bei, ZHANG Siqi, et al. Numerical earthquake prediction[J]. Physics, 2013, 42(4):237~255. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201304003.htm
    [6] 李方全, 孙世宗, 李立球.华北及郯庐断裂带地应力测量[J].岩石力学与工程学报, 1982, 1(1):73~86. http://mall.cnki.net/magazine/Article/HEFE200203001.htm

    LI Fangquan, SUN Shizong, LI Liqiu. In-situ stress measurements in North China and Tancheng-Lujiang fault zone[J]. Chinese Journal of Rock Mechanics and Engineering, 1982, 1(1):73~86. (in Chinese with English abstract) http://mall.cnki.net/magazine/Article/HEFE200203001.htm
    [7] 田中丰, 藤森邦夫, 大塚成昭.地壳应力歪の测定观测による大地震发生の预测[J].地震, 1998, 50(2):201~208.(in Japanese)
    [8] Liao C T, Zhang C S, Wu M L, et al. Stress change near the Kunlun fault before and after the Ms 8.1 Kunlun earthquake[J]. Geophysical Research Letter, 2003, 30(20):2027. http://www.researchgate.net/publication/241061058_stress_change_near_the_kunlun_fault_before_and_after_the_ms_8.1_kunlun_earthquake
    [9] Yamashita F, Fukuyama E, Omura K. Estimation of fault strength:reconstruction of stress before the 1995 Kobe Earthquake[J]. Science, 2004, 306(5694):261~263. doi: 10.1126/science.1101771
    [10] 郭啟良, 王成虎, 马洪生, 等.汶川Ms8.0级大震前后的水压致裂原地应力测量[J].地球物理学报, 2009, 52(5):1395~1401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200905029

    GUO Qiliang, WANG Chenghu, MA Hongsheng, et al. In-situ hydro-fracture stress measurement before and after the Wenchuan Ms8.0 earthquake of China[J]. Chinese Journal of Geophysics, 2009, 52(5):1395~1401. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200905029
    [11] Wu M L, Zhang Y Q, Liao C T, et al. Preliminary results of in-situ stress measurements along the Longmenshan fault zone after the Wenchuan Ms 8.0 earthquake[J]. Acta Geologica Sinica, 2009, 83(4):746~753. doi: 10.1111/j.1755-6724.2009.00098.x
    [12] 秦向辉, 陈群策, 谭成轩, 等.龙门山断裂带西南段现今地应力状态与地震危险性分析[J].岩石力学与工程学报, 2013, 32(S1):2870~2876. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yslxygcxb2013z1038

    QIN Xianghui, CHEN Qunce, TAN Chengxuan, et al. Analysis of current geostress state and seismic risk in southwest segment of Longmenshan fracture belt[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1):2870~2876. (in Chinese with English abstract) http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yslxygcxb2013z1038
    [13] 丰成君, 陈群策, 谭成轩, 等.汶川Ms 8.0地震对龙门山断裂带附近地应力环境影响初探——以北川、江油地区为例[J].地震学报, 2013, 35(2):137~150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201302001

    FENG Chengjun, CHEN Qunce, TAN Chengxuan, et al. 2013. A preliminary study of the influence of Wenchuan Ms 8.0 earthquake on in-situ stress state near Longmenshan fault zone:a case study in Beichuan and Jiangyou areas[J]. Acta Seismologica Sinica, 2013, 35(2):137~150. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201302001
    [14] 陈群策, 丰成君, 孟文, 等. 5.12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J].地球物理学报, 2012, 55(12):3623~3632. doi: 10.6038/j.issn.0001-5733.2012.12.005

    CHEN Qunce, FENG Chengjun, MENG Wen, et al. Analysis of in situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5.12 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2012, 55(12):3923~3932. (in Chinese with English abstract) doi: 10.6038/j.issn.0001-5733.2012.12.005
    [15] 孟文, 陈群策, 吴满路, 等.龙门山断裂带现今构造应力场特征及分段性研究[J].地球物理学进展, 2013, 28(3):1150~1160. http://mall.cnki.net/magazine/Article/DQWJ201303005.htm

    MENG Wen, CHEN Qunce, WU Manlu, et al. Research on segmentation and characteristic of Tectonic stress field of Longmenshan Fault Zone[J]. Progress in Geophysics, 2012, 28(3):1150~1160. (in Chinese with English abstract) http://mall.cnki.net/magazine/Article/DQWJ201303005.htm
    [16] Meng W, Chen Q C, Zhao Z, et al. Characteristics and implications of the stress state in the Longmen Shan fault zone, eastern margin of the Tibetan Plateau[J]. Tectonophysics, 2015, 656:1~19. doi: 10.1016/j.tecto.2015.04.010
    [17] Wang C H, Song C K, Guo Q L, et al. New insights into stress changes before and after the Wenchuan Earthquake using hydraulic fracturing measurements[J]. Engineering Geology, 2015, 194:98~113. doi: 10.1016/j.enggeo.2015.05.016
    [18] Qin X H, Chen Q C, Wu M L, et al. In-situ stress measurements along the Beichuan-Yingxiu fault after the Wenchuan Earthquake[J]. Engineering Geology, 2015, 194:114~122. doi: 10.1016/j.enggeo.2015.04.029
    [19] Wu M L, Zhang C Y, Fan T Y. Stress state of the Baoxing segment of the southwestern Longmenshan Fault Zone before and after the Ms 7.0 Lushan earthquake[J]. Journal of Asian Earth Sciences, 2016, 121:9~19. doi: 10.1016/j.jseaes.2016.02.004
    [20] 邓起东, 张培震, 冉勇, 等.中国活动构造基本特征[J].中国科学(D辑), 2002, 32(12):1020~1030. http://mall.cnki.net/magazine/article/JDXK200212006.htm

    DENG Qidong, ZHANG Peizhen, RAN Yongkang, et al. Basic characteristics of active tectonics of China[J]. Science in China Series D:Earth Sciences, 2003, 46(4):356~372. http://mall.cnki.net/magazine/article/JDXK200212006.htm
    [21] Xu Z Q, Ji S C, Li H B, et al. Uplift of the Longmen Shan Range and the Wenchuan earthquake[J]. Episodes, 2008, 31(3):291~301 https://www.researchgate.net/publication/263445677_Uplift_of_the_Longmen_Shan_Range_and_the_Wenchuan_earthquake
    [22] Hubbard J, Shaw J H. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M=7.9) earthquake[J]. Nature, 2009, 458(7235):194~197. doi: 10.1038/nature07837
    [23] 邓起东, 陈社发, 赵小麟.龙门山及其邻区的构造和地震活动及动力学[J].地震地质, 1994, 16(4):389~403. http://mall.cnki.net/magazine/Article/DZDZ404.013.htm

    DENG Qidong, CHEN Shefa, ZHAO Xiaolin. Tectonics, scismisity and dynamics of Longmenshan Mountains and its adjacent regions[J]. Seismology and Geology, 1994, 16(4):389~403. (in Chinese with English abstract) http://mall.cnki.net/magazine/Article/DZDZ404.013.htm
    [24] Burchfiel B C, Chen Z L, Liu Y, et al. Tectonics of the Longmen Shan and adjacent regions, central China[J]. International Geology Review, 1995, 37(8):661~735. doi: 10.1080/00206819509465424
    [25] 李勇, 周荣军, DENSMORE A L, 等.青藏高原东缘龙门山晚新生代走滑-逆冲作用的地貌标志[J].第四纪研究, 2006, 26(1):40~51. http://edu.wanfangdata.com.cn/Periodical/Detail/dsjyj200601006

    LI Yong, ZHOU Rongjun, DENSMOR A L, et al. Geomorphic evidence for the Late Cenozoic strike-slipping and thrusting in Longmen Mountain at the eastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 2006, 26(1):40~51. (in Chinese with English abstract) http://edu.wanfangdata.com.cn/Periodical/Detail/dsjyj200601006
    [26] Zhou R J, Li Y, Densmore A L, et al. Active tectonics of the Longmen Shan region on the eastern margin of the Tibetan plateau[J]. Acta Geologica Sinica, 2007, 81(4):593~604. doi: 10.1111/acgs.2007.81.issue-4
    [27] 李海兵, 付小方, VAN DER WORD J, 等.汶川地震(Ms 8.0)地表破裂及其同震右旋斜向逆冲作用[J].地质学报, 2008, 82(12):1623~1643. doi: 10.3321/j.issn:0001-5717.2008.12.002

    LI Haibin, FU Xiaofang, VAN DER WORD J, et al. Co-seisimic surface rupture and dextral-slip oblique thrusting of the Ms 8.0 Wenchuan earthquake[J]. Acta Geologica Sinica, 2008, 82(12):1623~1643. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2008.12.002
    [28] Li H B, Wang H, Xu Z Q, et al. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1(WSFD-1)[J]. Tectonophysics, 2013, 584:23~42. doi: 10.1016/j.tecto.2012.08.021
    [29] 吴满路, 张岳桥, 廖椿庭, 等.汶川Ms 8.0地震后龙门山裂断带地应力状态研究[J].地球物理学进展, 2013, 28(3):1122~1130. doi: 10.6038/pg20130303

    WU Manlu, ZHANG Yueqiao, LIAO Chunting, et al. Research on the stress state along the Longmenshan fault belt after the Wenchuan Ms 8.0 earthquake[J]. Progress in Geophysics, 2013, 28(3):1122~1130. (in Chinese with English abstract) doi: 10.6038/pg20130303
    [30] Liu Y W, Chen T, Xie F R, et al. Analysis of fluid induced aftershocks following the 2008 Wenchuan Ms 8.0 earthquake[J]. Tectonophysics, 2014, 619~620:149~158. http://www.sciencedirect.com/science/article/pii/S0040195113005568
    [31] Zoback M D, Tsukahara H, Hickman S. Stress measurements at depth in the vicinity of the San Andreas fault:implications for the magnitude of shear stress at depth[J]. Journal of Geophysical Research, 1980, 85(B11):6157~6173. doi: 10.1029/JB085iB11p06157
    [32] Tan C X, Wang R J, Sun Y, et al. Numerical modelling estimation of the 'tectonic stress plane' (TSP) beneath topography with quasi-U-shaped valleys[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2):303~310. doi: 10.1016/S1365-1609(03)00096-0
    [33] de Vallejo L I G, Hijazo T. A new method of estimating the ratio between in situ rock stresses and tectonics based on empirical and probabilistic analyses[J]. Engineering Geology, 2008, 101(3~4):185~194. https://www.deepdyve.com/lp/elsevier/a-new-method-of-estimating-the-ratio-between-in-situ-rock-stresses-and-wikWQ4LMAO
    [34] Stephansson O, Zang A. ISRM suggested methods for rock stress estimation-part 5:establishing a model for the in situ stress at a given site[J]. Rock Mechanics and Rock Engineering, 2012, 45(6):955~969. doi: 10.1007/s00603-012-0270-x
    [35] Lu R Q, He D F, John S, et al. Structural model of the central Longmen Shan thrusts using seismic reflection profiles:implications for the sediments and deformations since the Mesozoic[J]. Tectonophysics, 2014, 630:43~53. doi: 10.1016/j.tecto.2014.05.003
    [36] Brown E T, Hoek E. Trends in relationships between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4):211~215. http://www.sciencedirect.com/science/article/pii/0148906278912275
    [37] 王成虎, 宋成科, 郭启良, 等.利用原地应力实测资料分析芦山地震震前浅部地壳应力积累[J].地球物理学报, 2014, 57(1):102~114. doi: 10.6038/cjg20140110

    WANG Chenghu, SONG Chengke, GUO Qiliang, et al. Stress build-up in the shallow crust before the Lushan earthquake based on the in-situ stress measurements[J]. Chinese Journal of Geophysics, 2014, 57(1):102~114. (in Chinese with English abstract) doi: 10.6038/cjg20140110
    [38] Ljunggren C, Chang Y T, Janson T, et al. An overview of rock stress measurement methods[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7~8):975~989. https://www.researchgate.net/publication/222633034_An_Overview_of_Rock_Stress_Measurement_Methods
    [39] Haimson B C. The effect of lithology, inhomogeneity, topography, and faults, on in situ stress measurements by hydraulic fracturing, and the importance of correct data interpretation and independent evidence in support of results[A]. Proceedings of 2010 International Symposium on In-Situ Rock Stress[C]. Beijing, China: International Society for Rock Mechanics and Rock Engineering, 2010.
    [40] 陈运泰, 杨智娴, 张勇, 等.浅谈芦山地震[J].地震学报, 2013, 35(3):285~295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201303001

    CHEN Yuntai, YANG Zhixian, ZHANG Yong, et al. A brief talk on the 20 April 2013 Lushan Mw 6.7 earthquake[J]. Acta Seismologica Sinica, 2013, 35(3):285~295. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhen201303001
    [41] 单斌, 熊熊, 郑勇, 等. 2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系[J].中国科学:地球科学, 2013, 43(6):1002~1009. http://mall.cnki.net/magazine/Article/JDXK201306008.htm

    SHAN Bin, XIONG Xiong, ZHENG Yong, et al. Stress changes on major faults caused by 2013 Lushan earthquake and its relationship with 2008 Wenchuan earthquake[J]. Science China Earth Sciences, 2013, 56(7):1169~1176. http://mall.cnki.net/magazine/Article/JDXK201306008.htm
    [42] 谭成轩, 张鹏, 丰成君, 等.探索首都圈地区深孔地应力测量与实时监测及其在地震地质研究中应用[J].地质学报, 2014, 88(8):1436~1452. http://www.oalib.com/paper/4875165

    TAN Chengxuan, ZHANG Peng, FENG Chengjun, et al. An approach to deep borehole crustal stress measuring and real-time monitoring and its application in seismogeology research in Capital Beijing region[J]. Acta Geologica Sinica, 2014, 88(8):1436~1452. (in Chinese with English abstract) http://www.oalib.com/paper/4875165
    [43] Zhang C Y, Wu M L, Chen Q C, et al. Piezomagnetic in-situ stress monitoring and its application in the Longmenshan fault zone[J]. Acta Geologica Sinica, 2014, 88(5):1592~1602. doi: 10.1111/1755-6724.12321
    [44] 郭祥云, 陈学忠, 李艳娥, 等.四川芦山7.0级地震前中小地震P轴方位角CV值的变化[J].地震工程学报, 2016, 38(2):242~248. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201602011

    GUO Xiangyun, CHEN Xuezhong, LI Yan'e, et al. CV value variation of P-axis azimuth for small to moderate earthquakes before the Lushan Ms7.0 earthquake in Sichuan[J]. China Earthquake Engineering Journal, 2016, 38(2):242~248. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201602011
    [45] 李秋红, 李英, 陈双贵.汶川地震(Ms8.0)前的地磁低频峰值变化[J].地震工程学报, 2016, 38(4):606~608. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201604017

    LI Qiuhong, LI Ying, CHEN Shuanggui. Peak value change of power spectrum at low frequency before Wenchuan Ms8.0 earthquake[J]. China Earthquake Engineering Journal, 2016, 38(4):606~608. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdzxb201604017
    [46] 王宁, 王生文, 吕健, 等.四川地区地震前跨断层数据异常分析[J].地震工程学报, 2017, 39(2):294~300. http://mall.cnki.net/magazine/Article/HDKD198404010.htm

    WANG Ning, WANG Shengwen, LV Jian, et al. Pre-earthquake anomaly analysis of cross-fault data in Sichuan[J]. China Earthquake Engineering Journal, 2017, 39(2):294~300. (in Chinese with English abstract) http://mall.cnki.net/magazine/Article/HDKD198404010.htm
    [47] Zoback M D, Townend J. Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere[J]. Tectonophysics, 2001, 336(1/4):19~30. https://www.deepdyve.com/lp/elsevier/implications-of-hydrostatic-pore-pressures-and-high-crustal-strength-NE1t4xnQFi
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  126
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-10
  • 修回日期:  2018-05-03
  • 刊出日期:  2018-06-28

目录

    /

    返回文章
    返回