On research methodology for deformation history of tectonic lithofacies in sedimentary basin and their application
-
摘要: 基于(非)金属矿产-铀-煤-油气资源同盆共存,盆内构造岩相变形史与成藏成矿事件的耦合结构一直是科学难题。在构造岩相学填图和构造岩相变形史研究基础上,将沉积盆地构造岩相变形史划分为前盆地期、成盆期、盆地反转期、盆地构造变形改造期、盆内岩浆叠加期和盆地表生变化期6个演化期。研究发现,采用构造岩相学填图创新方法,可有效圈定沉积盆地内同生构造样式与构造组合。在火山岩区采用次火山岩侵入、火山隐爆-侵出、火山爆发-喷发等12个相系进行构造岩相填图,有助于有效圈定火山机构中心、火山热液成岩成矿中心和火山热水沉积成岩成矿中心的位置。盆-山-原转换构造岩相带是流体大规模运移和储集构造岩相带,也是(非)金属矿-铀-煤-油气资源同盆共存富集成藏成矿的有利构造岩相带;前陆盆地、山间盆地和后陆盆地具有不同的变形构造组合;构造岩相学研究和填图有助于研究沉积盆地变形期内古热储构造、冠羽状垂向热流柱构造、煤系烃(矿)源岩生排烃成藏成矿事件序列等问题。壳源岩浆、幔-壳混源岩浆、幔源岩浆在盆地岩浆叠加期,形成了相应的岩浆叠加构造样式和岩浆叠加成岩相系。在盆内岩浆底拱侵位形成的穹状不对称复式褶皱系统内,发育了强烈的岩浆-构造-岩性-热流体四重耦合结构,形成了与盆内岩浆再造-叠加成岩成矿有关的电气石热流柱构造,以底拱旋转断褶带、电气石和白云母蚀变相系为特征。与盆内岩浆-改造作用有关的富CO2型热流柱构造,表现为热启断裂组和铁锰碳酸盐矿物垂向分带,并与菱铁矿矽卡岩相→矽卡岩化大理岩相→铁锰碳酸盐化大理岩相→大理岩化结晶灰岩垂向分带相共生。Abstract: The coupling pattern between the deformation history of tectonic lithofacies and the sequence of ore (reservoir)-forming in the basin remain as an unsettled scientific issue, for (non-) metals, uranium, coal, oil and gas resources being hosted in the same sedimentary basin. On the basis of tectonic lithofacies mapping and tectonic lithofacies deformation history study, the deformation history of tectonic lithofacies can be classified into six stages: pre-basin formation, basin formation, basin inversion, basin deformation, basin-in magmatic superimposition, and basin supergene. The main results are as follows. Firstly, patterns and combination of snygenetic structure in the basin can be delineated by innovative approach of tectonic lithofacies mapping. The tectonic lithofacies mapping of 12 lithofacies series of cryptovolcanic rock intrusion, volcanic cyptoexplosion-intrusion and volcanic explosion-eruption in the volcanic area helps to delineate the central parts of volcanic edifice, diagenesis and mineralization of volcanic hydrothermal fluid, and sedimentation of volcanic hydrothermal vent. Secondly, the transitional tectofacies zone of basin-mountain-plateau is a tectonic lithofacies zone for fluid migration and storage on a large scale, and also a favorable tectonic lithofacies belt for (non-) metals-uranium-coal-oil and gas resources hosted in the same basin. Foreland basin, intermountain basin, and hinterland basin have different styles of deformation tectonics. The study of tectonic lithofacies and mapping contributes to understand the paleo-geothermal reservoir, the series of reservoir-forming and ore-forming events for the hydrocarbon generation and migration derived from the coal-measure metal-bearing source rocks, etc. Thirdly, basin-in crust-source magma, combination of crust-mantle derived magma, and mantle-derived magma had formed their corresponding magmatic superimposing tectonics and magmatic superimposing diagenetic lithofacies system, respectively. Four coupling structures of magma-tectonics-lithology-hydrothermal fluid existed in the asymmetry dome-shaped complex fold formed by magmatic hunch-up. On the one hand, tourmaline-rich plume tectonics produced by the diagenesis and ore-forming of basin-in magmatic reconstruction-superimposing were typified by hunch-up and rotated fault-fold zone, series of tourmaline alteration facies. On the other hand, CO2-rich plume tectonics produced by basin-in magmatic reworking was characterized by thermal-derived faults, vertical zoning of Fe-Mn-carbonate minerals, and they intergrowth with vertical zoning of siderite skarn, skarnized marble, Fe-Mn carbonate minerals hosted in marble, and marbleization crystalline limestone in sequence.
-
图 1 新疆塔西和陕西凤太地区沉积盆地变形构造样式与构造组合图(据方维萱和黄转盈, 2019; 方维萱等, 2020修改)
a—新疆乌拉根挤压伸展转换盆地与盆-山-原镶嵌构造(a1—乌拉根砂砾岩型铅锌-天青石矿床和巴什布拉克砂砾岩型铀矿床新近纪—第四纪成矿成相模型; a2—砂砾岩型铜铅锌-天青石-铀-煤同盆共存富集成藏成矿与中新世—古近纪构造-热事件生烃成矿模型; a3—晚白垩世—古近纪初挤压伸展转换盆地与构造-热事件生烃成矿模型); b—新疆萨热克巴依山间盆地与盆山镶嵌构造(b1—萨热克巴依山间盆地与盆山镶嵌构造平面图; b2—萨热克巴依山间盆地与盆山镶嵌构造剖面图(地幔热流柱构造, 幔源碱性辉绿辉长岩脉群侵位); b3—萨热克巴依山间盆地基底构造层与隐蔽构造洼地); c—陕西凤太泥盆纪拉分盆地变形构造样式与构造变形序列
Q4—第四系砂砾层和泥沙质沉积物; N2a—新近系阿图什组; N1a—新近系安居安祖; (E3-N1)k—渐新统—中新统克孜洛依组; E—古近系; E1a—古近系阿尔塔什组; K—白垩系; K1—下白垩统; K1kz1—下白垩统克孜勒苏群第一岩性段; K1kz2—下白垩统克孜勒苏群第二岩性段; K1kz3—下白垩统克孜勒苏群第三岩性段; K1kz5—下白垩统克孜勒苏群第五岩性段; J—侏罗系; J1k—下侏罗统康苏组; J2y—中侏罗统杨叶组; J2t—中侏罗统塔尔尕组; J3k1—上侏罗统库孜贡苏组第一岩性段; J3k2—上侏罗统库孜贡苏组第二岩性段; T—三叠系; P-T1—二叠系—下三叠统; C-P—石炭系和二叠系; C—石炭系; C1—下石炭统; C2—上石炭统; D-C—泥盆系和石炭系; D-C-T—泥盆系、石炭系和三叠系; D—泥盆系; D1—下泥盆统; D2—中泥盆统; D3—上泥盆统; S—志留系; Pt2—中元古界阿克苏岩群变质岩系; FS—萨热克南脆韧性断裂带; FN—萨热克北脆韧性剪切带; Fh1~Fh4—基底盲冲断裂带和编号; DS2—构造岩相期次和编号; DS1a—构造岩相期次内构造岩相阶段和编号。
1—碱性辉绿辉长岩脉; 2—流变状褶皱状大理岩层; 3—中元古界阿克苏岩群(下基底构造层); 4—紫红色铁质杂砾岩类(山麓冲积扇相旱地扇亚相); 5—山麓冲积扇相巨砾岩、含砾砂岩和碳质泥岩(烃矿源岩); 6—泥质钙屑同生角砾岩、钙屑同生角砾岩和薄层结晶灰岩; 7—泥质灰岩、钙屑泥质细砂岩; 8—煤层、含煤细砂岩和碳质泥岩(煤系烃矿源岩); 9—石英片岩、绢云母石英片岩、石英绢云母片岩。韧性剪切带内发育绢英质糜棱岩和碳酸盐质糜棱岩; 10—碱性辉绿辉长岩脉群(地幔羽构造); 11—断裂带及运动方向; 12—煤矿床; 13—砂砾岩型铜矿层; 14—砂砾岩型铅锌矿体; 15—砂岩型铜矿体; 16—砂砾岩型铜多金属矿床; 17—铜矿(化)层累计厚度; 18—构造洼地编号; 19—沥青化蚀变相范围; 20—(油迹)沥青化蚀变相范围; 21—铀矿体; 22—角度不整合界限; 23—富Ba2+-SO42-的高氧化态酸性气流柱构造; 24—花岗闪长岩; 25—同生滑塌角砾岩相和同生滑移褶皱; 26—铁白云石钠长隐爆角砾岩和钠长铁碳酸盐质隐爆角砾岩, 为热流柱构造系统的物质组成; 27—褶叠构造层; 28—构造面理和期次; 29—断裂及运动方向; 30—轴面劈理和破劈理。Figure 1. Styles and combinations of deformation tectonics for the sedimentary basin in the Taxi area in Xinjiang and the Fengtai area in Shaanxi(modified after Fang and Huang, 2019; Fang et al., 2020)
(a)Wulagen compression-extension transitional basin and mosaic tectonics of basin-mountain-plateau in Xinjiang(a1-Neogene to Quaternary lithofacies-forming pattern for the Wulagen glutenite-type Pb-Zn-celestite deposit and the Bashibulake uramium deposit; a2-Hydrocarbon generation and ore-forming pattern of Miocene to Palaeogene tectonic thermal events for glutenite-type Cu-Pb-Zn-celestite-coal deposits in the same basin; a3-Hydrocarbon generation and ore-forming pattern of Upper Cretaceous to Early Palaeogene tectonic thermal events for compression-extension transitional basin); (b)The Sareke intermontane basin and mosaic tectonics of basin-mountain-plateau in Xinjiang(b1-Plane map for the Sareke intermontane basin and mosaic tectonics of basin-mountain-plateau; b2-Profile map for the Sareke intermontane basin and mosaic tectonics of basin-mountain-plateau; plume tectonics and emplacement of alkaline gabbro-diabase dykes derived from mantle); b3-Base tectonic layer and blind tectonic lowland for the Sareke intermontane basin); (c)Sequences and patterns of deformational tectonics for Fengxian to Taibai apart-pull basin in Shaanxi
Q4-Quaternary grit and silt sediments; N2a-Neogene Atushi Formation; N1a-Neogene Anju'an Formation; (E3-N1)k-Oligocene-Miocene Kezileyi Formation; E-Palaeogene; E1a-Palaeogene Aertashi Formation; K-Cretaceous; K1-Lower Cretaceous; K1kz1-First lithologic interval of Lower Cretaceous Kezilesu Group; K1kz2-Second lithologic interval of Lower Cretaceous Kezilesu Group; K1kz3-Third lithologic interval of Lower Cretaceous Kezilesu Group; K1kz5-Fifth lithologic interval of Lower Cretaceous Kezilesu Group; J-Jurassic System; J1k-Lower Jurassic Kangsu Formation; J2y-Middle Jurassic Yangye Formation; J2t-Middle Jurassic Taerga Formation; J3k1-First lithologic interval of Upper Jurassic Kuzigongsu Formation; J3k2-Second lithologic interval of Upper Jurassic Kuzigongsu Formation; T-Triassic System; P-T1-Permain to Lower Triassic System; C-P-Carboniferous to Permain System; C-Carboniferous System; C1-Lower Carboniferous series; C2-Upper Carboniferous series; D-C-Devonian to Carboniferous System; D-C-T-Devonian-Carboniferous-Triassic System; D-Devonian System; ;D1-Lower Devonian; D2-Middle Devonian; D3-Upper Devonian; S-Silurian System; Pt2-Mesoproterozoic Akesu Rock Group; FS-Southern Shareke brittle-ductile fault belt; FN-Nothern Shareke brittle-ductile fault belt; Fh1-Basal blindthrust and its number; DS2-Stages and numbers of tectonic lithofacies; DS1a-Subfacies of tectonic lithofacies
1-Alkaline gabbro-diabase dyke; 2-Rheological folding marble; 3-Mesoproterozoic Akesu Rock Group (lower base tectonic layer); 4-Fuchsia irony anagenite (dryland-fan subfacies of piedmont alluvial fan facies); 5-Boulder conglomerate, pebbly sandstone, and carbonaceous mudstone in piedmont alluvial fan facies (mineral-hydrocarbon source rock); 6-Muddy-calcarenitic autobreccia, calcarenitic autobreccia and lamina crystalline limestone; 7-Argillaceous limestone, calcarenitic muddy packsand; 8-Coal seam, coal-bearing packsand, and carbonaceous mudstone (coal-measure mineral-hydrocarbon source rock); 9-Quartz schist, sericite schist, quartz sericite schist. Calcite quartz sericite mylonite and carbonate mylonite occurred in ductile shear zone; 10-Dykes of alkaline gabbro-diabase(plume tectonics of mantle); 11-Faults and their moving directions; 12-Coal deposit; 13-Glutenite-type copper orebody; 14-Glutenite-type Zn-Pb orebody; 15-Sandstone-type copper orebody; 16-Glutenite-type copper-polymetallic orebody; 17-Gross thickness of copper orebody; 18-Tectonic lowland and its number; 19-Bituminization altered facies; 20-Oil-stains-bituminization altered facies; 21-Uranium orebody; 22-Angular unconformity; 23-Ba2+-SO42-rich plume tectonics with high oxidating acid facies; 24-Granodiorite; 25-Syngenetic slump breccia lithofacies and syngenetic slip fold; 26-Ankerite albite cryptoexplosive breccia and albite Fe-carbonate cryptoexplosive breccia, and they are material composition of plume tectonics; 27-Tectonics of wrinkle layer; 28-Tectonic foliation and stage; 29-Fault and its moving direction; 30-Axial plane cleavage and fracture cleavage图 2 塔里木地区隐伏烃矿源岩生排烃成藏成矿事件序列与湘赣地区盆内构造-岩浆-热事件
a—煤系烃矿源岩生排烃与成藏成矿事件序列; b—烃类和非烃类成藏成矿流体形成序列; c—湘赣中南部骑田岭构造-岩浆-热事件和龙潭组镜质体反射率图(据潘伟尔等, 1993修改)
Figure 2. Sequences of mineral-hydrocarbon generation and migration from the buried coal-measure source rock in the Tarim area and basin-in-magmatic thermal event in the Hunan-Jiangxi area
(a)Sequences of mineral-hydrocarbon generation derived from metals-bearing coal-measure source rock; (b)Sequences of ore-forming and reservoir-forming for hydrocarbon generation and non-hydrocarbon generation; (c)Tectonic-magmatic thermal events for the Qitianling area and vitrinite reflectance for the Longtan Formation in the south central areas of Hunan to Jiangxi (modified after Pan et al., 1993)
图 3 海南丰收钨铯铷矿床岩浆叠加构造样式与构造岩相组合
a—111勘探线构造岩相学剖面图; b—钻孔岩心照片与构造岩相学(b1—透辉石石榴子石矽卡岩化大理岩; b2—含白钨矿电气石化蚀变二长斑岩; b3—含钨电英岩中白钨矿热液角砾; b4—碎裂岩化相黑云母角岩裂隙中细脉状白钨矿; b5—电气石岩浆隐爆角砾岩相与含钨电英岩中热液角砾岩相, 角砾为白钨矿、电气石化二长斑岩和电气石化碎裂状角岩; b6—电英岩中白钨矿热液角砾; b7—电气石岩浆隐爆角砾岩相, 电气石蚀变二长斑岩中白钨矿热液角砾; b8—石英电气石热液角砾岩; b9—脉带状电气石钾长石石英蚀变岩和蚀变黑云母闪长岩; b10—网脉状电气石化硅化钾长石化蚀变岩, 原岩为蚀变黑云母闪长岩)
Figure 3. Magmatic superimposing tectonic pattern and their tectonic lithofacies in the Fengshou W-Cs-Rb deposit, Hainan
(a)Tectonic lithofacies profile map for Exploration Line 111;(b)Photos of tectonic lithofacies for drillcores; b1-Diopside-garnet skarnization marble; b2-Scheelite-bearing tourmaline altered ivernite; b3-Hydrothermal breccia of scheelite in tungsten-bearing torumalite; b4-Scheelite veinlets in fractures of biotite hornstone with cataclastic lithofacies; b5-Lithofacies of tourmaline magmatic cryptoexplosive breccia and lithofacies of hydrothermal breccia in tungsten-bearing tourmalite. Breccias include scheelite, tourmaline altered ivernite, and tourmaline altered cataclastic hornstone; b6-Scheelite hydrothermal breccia in tourmalite; b7-Lithofacies of tourmaline magmatic cryptoexplosive breccia, and hydrothermal breccia of scheelite in tourmaline altered ivernite; b8-Quartz-tourmaline hydrothermal breccia; b9-Banded-veinlet tourmaline-potassium feldspar-quartz altered rock and altered biotite diorite; b10-Veinlet tourmaline-silication-potash feldspathization altered rock (protolith may be altered biotite diorite)
图 4 老厂矿田隐蔽岩浆叠加构造样式与隐伏花岗岩顶面等高线图(据郭玉乾等, 2021修改)
Figure 4. Buried magmatic superimposed tectonic patterns and contour map of blind granite top in the Laochang ore-field (modified after Guo et al., 2021)
图 5 老厂矿田隐伏花岗岩突起、复式背斜和断褶构造带(据郭玉乾等, 2021修改)
a—老厂矿田坳头山—湾子街矿段10勘探线(东西向)剖面图; b—老厂矿田坳头山—湾子街矿段—17勘探线(东西向)剖面图; c—老厂矿田梅雨冲矿段—高松矿田芦塘坝F勘探线(南北向)剖面图
Figure 5. Bulge of blind granite, complex anticline, and fault-fold zone in the Laochang ore field (modified after Guo et al., 2021)
(a) No.10 exploration line profile (EW-trending) from the Aotoushan ore district to Wanzijie ore block in the Laochang orefield; (b) No.17 exploration line profile (EW-trending) from the Aotoushan ore district to Wanzijie ore block in the Laochang orefield; (c) No.F exploration line profile (SN-trending) from the Meiyuchong ore block in the Laochang orefield to the Lutangba ore district in the Gaosong orefield
表 1 火山岩区内主要火山岩相系类型、火山构造样式与成相机制
Table 1. Major types of volcanic rock lithofacies and volcanic tectonics, and the mechanism of lithofacies formation
火山岩相系 主要相类型 代表性的岩石组合 火山构造样式 成相机制和空间拓扑学 A相系: 次火山岩侵入相系(火山机构根部相系) 次火山岩脉相(岩脉、岩墙和岩枝等) 石英斑岩、二长斑岩、闪长斑岩、辉长玢岩-辉绿玢岩、煌斑岩 次火山岩侵入构造(火山通道)、次火山岩叠加侵入构造 次火山岩侵入成相型具有穿时叠加相体结构。常形成正向火山穹隆构造、异时同位叠加镶嵌结构、穿时叠加镶嵌结构、"后来者居上"穿切相体。 次火山岩侵入相(小岩株) 闪长斑岩、花岗斑岩、二长斑岩、长石斑岩、正长斑岩、石英斑岩 B相系: 火山隐爆-侵出相系(火山机构中心相系) 岩浆侵入角砾岩相+岩浆隐爆角砾岩相+岩浆角砾岩相 闪长岩质角砾岩(含花岗岩角砾)、辉绿岩质岩浆侵入角砾岩、铁白云石钠长岩浆隐爆角砾岩 火山喷发-岩浆侵入角砾筒构造(管道) 火山隐爆-侵出成相型呈中心环带状。火山喷发-岩浆侵入角砾筒构造穿切镶嵌在火山锥体之上, 叠合火山锥型。分布于正向火山穹隆中心或负向火山机构边缘。 碎斑熔岩相(侵出相)、碎屑熔岩 安山质碎斑熔岩、英安质碎斑熔岩、流纹质碎斑熔岩、长石碎斑熔岩 火山颈构造、火山侵出熔岩丘构造 环绕式-环带状面型和叠置型。位于火山穹丘中心部位, 热能耦合反应中心相呈环带状分布于火山洼地和火山穹隆的周缘, 火山热液成矿中心周缘成相型。 C相系: 火山爆发-喷发相系(火山喷发机构周边相系) 火山溢流相 苦橄质熔岩、碱玄质熔岩、玄武质熔岩、安山质熔岩、流纹斑岩-英安斑岩、 火山熔岩被 火山喷溢-喷发成相型, 具有环带状或舌状相体结构。在正向火山穹隆构造周缘具有时序结构的半环状—环状的似层状-层状叠置相体+穿时非层状穿切结构的镶嵌相体。面带叠置型。 火山爆发熔结相 熔结火山角砾岩、熔结火山集块岩、熔结凝灰岩、火山熔岩、火山隐爆角砾岩 火山锥(内锥)。酸性火山岩形成熔岩丘 火山爆发沉积相 火山碎屑岩、火山碎屑流岩、角砾凝灰岩、晶屑凝灰岩、(空落)凝灰岩 火山锥体的外锥 围绕正向火山喷发机构周缘呈叠置相体。正向火山机构周缘分布较广。 火山口湖泊相 复成分火山角砾岩、简单成分沉火山角砾岩、凝灰岩、凝灰质灰岩、凝灰质白云岩、火山热水沉积岩、生物碎屑灰岩 塌陷火山口构造/火山湖泊盆地, 盆内面状沉积型。 分布在负向火山机构内部。内倾斜似环状具有时序结构的叠置相体。碳质钙屑泥岩可指示水体深度。玄武岩具有"红顶绿底"结构。 水下火山喷发-沉积相 蚀变火山岩类、火山热液角砾岩、绿泥石岩、金云母岩、阳起石岩、钠长石岩、伊利石蚀变岩、铁白云石钠长石岩 火山沉积洼地(盆地), 盆内面状沉积型 海相(湖相)水下火山喷发作用, 具有时序结构的半环状—环状的似层状—层状叠置相体+穿时非层状穿切结构的镶嵌相体。 D相系: 火山沉积相系(火山喷发机构边缘相系) 火山沉积相 沉凝灰岩、沉火山角砾岩、沉晶屑凝灰岩、凝灰质砂岩、凝灰质灰岩 火山浊积扇相、火山泥石流相砾岩等火山沉积盆地内火山喷发-沉积事件旋回 震发式火山爆发沉积事件成相型, 与沉积岩相系具有时序叠置。 火山浊流沉积相/火山泥石流相/火山碎屑流相 凝灰质浊积岩、含火山砾石的凝灰质砂岩等具有鲍马序列的火山沉积岩系 E相系: 沉火山岩相系列(火山机构远端相系) 河流相火山岩质砾岩 玄武质砾岩、安山质砾岩 古河流和滨海岸等 火山物质的沉积相分异型。火山岩和火山物质剥蚀再循环沉积, 遵循沉积相分异规律。煤系中稀有稀散金属与碱性火山凝灰岩层密切有关。 凝灰质混合潮坪相 层纹状凝灰质硅质岩、凝灰质白云岩、凝灰质砂岩 潮坪环境 火山碎屑流相 火山碎屑岩+沉凝灰岩+沉积岩 火山扇状体 F相系: 衰竭火山口相系 衰竭火山口次火山岩相 蚀变火山角砾岩、蚀变火山熔岩、蚀变火山集块岩、脉岩类 塌陷火山口构造/衰竭火山口洼地 衰竭火山口成相型, 负向火山机构(如塌陷火山口), 火山热液蚀变岩相系+次火山岩侵入成相型。火山热液角砾化成相作用。 火山热水同生蚀变岩相 钠长石热液角砾岩、钠长铁白云石热液角砾岩、硅化热液角砾岩、硅化钠化热液角砾岩、伊利石热液角砾岩 岩浆蒸汽角砾岩相系 绢云母热液角砾岩、多孔状硅化热液角砾岩、复成分热液角砾岩 "浆-液-气"隐爆角砾岩化成相作用 G相系: 火山热液隐爆相系(火山热液成矿中心相) 火山热液隐爆角砾岩相 黏土化绢云母热液角砾岩、赤铁矿电气石热液角砾岩等 "浆-液"隐爆成岩成矿中心相 火山热液隐爆角砾岩化成相型。火山-次火山热液蚀变作用成相型。 火山气化热液角砾岩相 明矾石热液角砾岩、硅化热液角砾岩、伊利石热液角砾岩、碳酸盐热液角砾岩等 气液隐爆成岩成矿中心相 火山-次火山热液成矿中心, 火山气化热液角砾岩化成相作用。 H相系: 火山热液蚀变相系(热能耦合反应中心相) 火山热液蚀变相 青磐岩化蚀变岩、绿泥石化蚀变岩、伊利石化蚀变岩、绢云母蚀变岩、钠长石蚀变岩、铁白云石钠化蚀变岩 围岩蚀变体系 火山-次火山热液成矿中心周缘成相型, 火山热液蚀变作用。 I相系: 火山热水沉积相系 火山热水沉积岩相 蚀变凝灰岩、绿泥石蚀变岩、绢云母蚀变岩、钠长石岩、硅质钠长石岩、铁白云石岩等 火山洼地内盆内面状沉积型 火山热水沉积成相型, 火山热水沉积成矿中心相。 J相系: 火山地堑盆地边缘相系(基底构造层) 火山熔积角砾岩相 熔积复成分角砾岩、熔积火山碎屑岩 火山穹隆构造边缘相 同火山喷发-岩浆侵入期火山物质熔积作用, 含有源自基底的物质和碎屑。 火山热水循环对流热液角砾岩相 硅化钠化热液角砾岩、青磐岩化蚀变角砾岩 火山机构周缘环状和不规则状热液房 火山穹隆构造边缘的火山热水渗滤循环对流体系(热液房)/复合热液岩溶角砾岩相系 火山隐爆坍塌角砾岩相 火山隐爆坍塌岩块 基底构造层中坍塌-陷落岩块带 火山隐爆震裂作用和凝灰质熔结成相作用 陡岸坍塌角砾岩相 构造岩块、巨砾岩、混积岩、同生角砾岩 同生断裂带 盆地斜坡扇积砾岩相/同生角砾岩相 复成分火山角砾岩、简单成分沉火山角砾岩、沉积砾岩 盆地同生断裂带和盆地边缘斜坡带 盆地斜坡同生断裂+火山地震作用 K相系: 次火山侵入岩相系与构造-岩浆断隆构造带 次火山岩侵入相 闪长斑岩、石英斑岩、二长斑岩、正长斑岩、碱性花岗斑岩 次火山侵入构造 次火山岩侵入成相型 糜棱岩相-糜棱岩化相 黑云母角闪石糜棱岩、黑云母二长石糜棱岩、矽卡岩化糜棱岩、碎裂岩化糜棱岩 同火山喷发-岩浆侵入期韧性剪切带 低角度韧性剪切带→高角度脆韧性剪切带+碎裂岩化相 古风化壳相-古土壤相 古表生裂隙泥质充填物、伊利石黏土岩 古隆起剥蚀区 基底隆起区风化残积作用成相型 L相系: 盆内岩浆叠加再造相系 深成岩浆弧叠加相 钠长石黑云母角砾岩、铁白云石钠长石角砾岩、钠长石铁白云石角砾岩 岩浆叠加侵入构造系统 盆内岩浆叠加期形成的岩浆-构造-热事件叠加再造作用成相型 -
CHEN X H, CHEN Z L, YANG N, 2009. Study on regional mineralizations and ore-field structures: building of mineralizing tectonic systems[J]. Journal of Geomechanics, 15(1): 1-19. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX200901002.htm FANG W X, 2017. Innovations on assembled techniques of geochemical lithofacies and their applications in basin analysis and exploration for minerals in basins[J]. Acta Geologica Sinica (English Edition), 91(S1): 199-201. doi: 10.1111/1755-6724.13255 FANG W X, WANG L, LU J, et al., 2017. Chloritization facies and restoration of heat flux for tectonic-magmatic-thermal events of Sareke copper mine in the Xinjiang Uygur Autonomous Region, China[J]. Acta Mineralogica Sinica, 37(5): 661-675. (in Chinese with English abstract) FANG W X, WANG L, JIA R X, 2018. Mosaic tectonics of Mesozoic to Cenozoic basin-mountain-plateau in the Western Tarim basin, China: glutenite-type Cu-Pb-Zn-celesite-U-coal metallogenic system[J]. Journal of Earth Sciences and Environment, 40(6): 663-705. (in Chinese with English abstract) FANG W X, HUANG Z Y, 2019. Tectonic deformation sequences of sedimentary basins: Ⅰ. Associations of tectonic deformation in late Paleozoic pull-apart basin and Au-Cu Pb-Zn-polymetallic ore-concentrated areas in the Qinling Orogenic Belt[J]. Earth Science Frontiers, 26(5): 53-83. (in Chinese with English abstract) FANG W X, WANG L, LU J, et al., 2020. Mesozoic-Cenozoic sedimentary basin, foreland fold-and-thrust meralization reglarities of copper-lead-zinc-celesite-uranium-coal in Wulagen, Xinjiang, China[J]. Geotectonica et Metallogenia, 44(5): 881-912. (in Chinese with English abstract) FANG W X, 2020. Classification and types of diagenetic lithofacies systems in the sedimentary basin[J]. Geological Bulletin of China, 39(11): 1692-1714. (in Chinese with English abstract) FANG W X, WANG S C, JIA R X, et al., 2021a. Theoretical innovation, technology research and development, and frontiers on large-scale mapping of tectonic lithofacies[J]. Mineral Exploration, 12(7): 1488-1518. (in Chinese with English abstract) FANG W X, GUO Y Q, JIA R X, et al., 2021b. On relationship between the superimposed mineralization systems and the zoning patterns of vertical tectonic lithofacies in the Gejiu concentration area of Sn-Cu-W and three rare metals in Yunnan[J]. Journal of Geomechanics, 27(4): 557-584. (in Chinese with English abstract) FANG W X, ZHENG X M, FANG T H, et al., 2021c. Restoration of the Devonian-Carboniferous limited ocean basin and deep structure of ophiolitic melange in the Hongshishan area of Gansu Province[J]. Geological Bulletin of China, 40(5): 649-673. (in Chinese with English abstract) FENG J W, SUN J F, ZHANG Y J, et al., 2020. Control of fault-related folds on fracture development in Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 41(3): 543-557. (in Chinese with English abstract) doi: 10.1007/978-981-16-0761-5_123 FENG Y H, BIAN W H, GU G Z, et al., 2016. A drilling data-constrained seismic mapping for intermediate-mafic volcanic facies[J]. Petroleum Exploration and Development, 43(2): 228-236. (in Chinese with English abstract) https://www.sciencedirect.com/science/article/pii/S1876380416300283 HAN R S, WANG F, HU Y Z, et al., 2014. Metallogenic tectonic dynamics and chronology constrains on the Huize-type (HZT) germanium-rich silver-zinc-lead deposits[J]. Geotectonica et Metallogenia, 38(4): 758-771. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201404003.htm HAN R S, WANG M Z, JIN Z G, et al., 2020. Ore-controlling mechanism of NE-trending ore-forming structural system at Zn-Pb polymetallic ore concentration area in northwestern Guizhou[J]. Acta Geologica Sinica, 94(3): 850-868. (in Chinese with English abstract) JIAO Y Q, WU L Q, RONG H, et al., 2015. Sedimentology of coal-bearing basins[M]. Wuhan: China University of China Press: 1-436. (in Chinese) KANG Y Z, 2018. A study on oil-control model of subordinate shear structural system in China[J]. Journal of Geomechanics, 24(6): 737-747. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201806002.htm LI R X, DUAN L Z, CHEN B Y, et al., 2011. Alteration and metallogeny on the oxic-acid/anoxic-alkali interface of the Dongsheng uranium deposit in Northern Ordos basin[J]. Geotectonica et Metallogenia, 35(4): 525-532. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201104008.htm LI S F, CHEN H D, CAI G Q, et al., 2015. Material composition in Bashibulake uranium deposit[J]. Acta Mineralogica Sinica, 35(3): 365-372. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201503013.htm LI W Q, XIA B, WU G G, et al., 2005. Kangguertage ophiolite and tectornic significance, Shanshan, Xinjiang China[J]. Acta Petrologica Sinica, 21(6): 1617-1632. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200506012.htm LIANG M L, WANG Z X, LI C L, et al., 2020. Effect of structural deformation on permeability evolution of marine shale reservoirs[J]. Journal of Geomechanics, 26(6): 840-851. LIU J R, 2019. Stress field of fold structure and its evolution[J]. Journal of Geomechanics, 25(3): 341-348. (in Chinese with English abstract) GUO Yunqian, FANG Weixuan, LI Tiancheng, et al. 2021. Research on ore distric of the Aotoushan faults in Laochang orefield[R]. China Non-Ferrous Metals Resource Geological Survey. MA X H, XU C C, LI G H, et al., 2019. Distribution and gas-bearing properties of Permian igneous rocks in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 46(2): 216-225. (in Chinese with English abstract) doi: 10.1016/S1876-3804(19)60003-0 PAN W E, YANG Q, PAN Z G, 1993. Magmatic thermametamorphism of coal in central-southern Hunan and Jiangxi province[J]. Geoscience, 7(3): 326-336. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ199303009.htm SONG Y, FENG J W, DAI J S, et al., 2010. Relationship between structural stress field and development of fractures in foreland thrust belt[J]. Journal of Geomechanics, 16(3): 310-324. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201003009.htm TANG L J, QIU H J, YUN L, et al., 2014. Poly-phase reform late-stage finalization composite tectonics and strategic area selection of oil and gas resources in Tarim basin, NW China[J]. Journal of Jilin University (Earth Science Edition), 44(1): 1-14. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201401001.htm WANG G Q, LI X M, XU X Y, et al., 2014. Ziron U-Pb chronological study of the Hongshishan ophiolite in the Beishan area and their tectonic significance[J]. Acta Petrologica Sinica, 30(6): 1685-1694. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201406011.htm WANG G Q, LI X M, XU X Y, et al., 2021. Research status and progress of Paleozoic ophiolites in Beishan orogenic belt[J]. Geological Bulletin of China, 40(1): 71-81. (in Chinese with English abstract) WANG H, SHEN H, HUANG D, et al., 2014. Origin and distribution of hydrothermal dolomites of the middle Permian in the Sichuan basin[J]. Natural Gas Industry, 34(9): 25-32. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201409006.htm WANG W, LI W Y, GAO M X, et al., 2018. Constraints on tectonic, fluid and metallogenic system evolution for the formation of Sareke sandstone copper deposit in northwestern Tarim block[J]. Geological Bulletin of China, 37(7): 1315-1324. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201807015.htm WU G H, CHEN Z Y, GUO Q Y, 2014. Characteristics of carbonate deformation band and its Significance for hydrocarbon exploration: an example from the lower paleozoic in the Tarim Basin[J]. Geotectonica et Metallogenia, 38(3): 580-589. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201403008.htm XIONG T Y, YAO X, ZHANG Y S, 2010. A review on study of activity of Xianshuihe fault zone since the Holocene[J]. Journal of Geomechanics, 16(2): 176-188. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201002008.htm YANG K Q, 1984. Geochemical actions in tectono-dynamics[J]. Geotectonica et Metallogenia, 8(4): 327-336. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK198404003.htm YANG N, LV X X, ZHENG D M, 2005. Alteration of the igneous rock on the carbonate reservoirs in Talimu Basin[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 20(4): 1-4. (in Chinese with English abstract) YANG W X, YAN D P, QIU L, et al., 2018. The Mesozoic-Cenozoic deformation sequences of the Badu complex anticline and their significance for the evolution of the Nanpanjiang basin[J]. Earth Science Frontiers, 25(1): 33-46. (in Chinese with English abstract) YUAN B Y, TONG H W, WEN R L, et al., 2009. The formation mechanism of the Nihewan palro-lake and its relationship with living environment for early ancient humen[J]. Journal of Geomechanics, 15(1): 77-87. (in Chinese with English abstract) ZHANG B L, LV G X, SU J, et al., 2015. A study of the tectono-lithofacies mineralization regularities of the Gejiu tin-polymetallic orefield, Yunnan, and prospecting in its western part[J]. Earth Science Frontiers, 22(4): 78-87. (in Chinese with English abstract) ZHANG H F, TONG Y B, WANG H, et al., 2012. Early Cretaceous paleomagnetic results of the Simao area in the Indochina block and its tectonic implications[J]. Acta Geologica Sinica, 86(6): 923-939. (in Chinese with English abstract) ZHENG H R, CAI L G, LI T J, 2007. Evolutiion of forelang basins in the south and north of the Tianshan Mountains and the structural styles of fold-thrust belts[M]. Beijing: Geological Publishing House: 1-252. (in Chinese) ZOU C N, TAO S Z, ZHOU H, et al., 2008. Genesis, classification and evaluation method of diagenetic facies[J]. Petroleum Exploration and Development, 35(5): 526-540. (in Chinese with English abstract) doi: 10.1016/S1876-3804(09)60086-0 陈宣华, 陈正乐, 杨农, 2009. 区域成矿与矿田构造研究: 构建成矿构造体系[J]. 地质力学学报, 15(1): 1-19. doi: 10.3969/j.issn.1006-6616.2009.01.001 方维萱, 王磊, 鲁佳, 等, 2017. 新疆萨热克铜矿床绿泥石化蚀变相与构造-岩浆-古地热事件的热通量恢复[J]. 矿物学报, 37(5): 661-675. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201705018.htm 方维萱, 王磊, 贾润幸, 2018. 塔西地区中-新生代盆-山-原镶嵌构造区: 砂砾岩型铜铅锌-天青石-铀-煤成矿系统[J]. 地球科学与环境学报, 40(6): 663-705. doi: 10.3969/j.issn.1672-6561.2018.06.001 方维萱, 黄转盈, 2019. 沉积盆地构造变形序列Ⅰ: 秦岭晚古生代拉分盆地的构造组合与金-铜铅锌多金属矿集区构造[J]. 地学前缘, 26(5): 53-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201905007.htm 方维萱, 王磊, 鲁佳, 等, 2020. 新疆乌拉根中-新生代沉积盆地和前陆冲断褶皱带对铜铅锌-天青石-铀-煤成矿控制规律[J]. 大地构造与成矿学, 44(5): 881-912. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202005008.htm 方维萱, 2020. 论沉积盆地内成岩相系划分及类型[J]. 地质通报, 39(11): 1692-1714. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202011004.htm 方维萱, 王寿成, 贾润幸, 等, 2021a. 大比例尺构造岩相学填图理论创新、技术研发与发展方向[J]. 矿产勘查, 12(7): 1488-1518. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202107003.htm 方维萱, 郭玉乾, 贾润幸, 等, 2021b. 论云南个旧锡铜钨三稀金属矿集区叠加成矿系统与垂向构造岩相学结构的关系[J]. 地质力学学报, 27(4): 557-584. doi: 10.12090/j.issn.1006-6616.2021.27.04.048 方维萱, 郑小明, 方同辉, 等, 2021c. 甘肃红石山地区泥盆纪-石炭纪有限洋盆重建与蛇绿混杂岩深部结构[J]. 地质通报, 40(5): 649-673. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202105002.htm 冯建伟, 孙建芳, 张亚军, 等, 2020. 塔里木盆地库车坳陷断层相关褶皱对裂缝发育的控制[J]. 石油与天然气地质, 41(3): 543-557. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003012.htm 冯玉辉, 边伟华, 顾国忠, 等, 2016. 中基性火山岩井约束地震岩相刻画方法[J]. 石油勘探与开发, 43(2): 228-236. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602009.htm 韩润生, 王峰, 胡煜昭, 等, 2014. 会泽型(HZT)富锗银铅锌矿床成矿构造动力学研究及年代学约束[J]. 大地构造与成矿学, 38(4): 758-771. doi: 10.3969/j.issn.1001-1552.2014.04.003 韩润生, 王明志, 金中国, 等, 2020. 黔西北铅锌多金属矿集区成矿构造体系及其控矿机制[J]. 地质学报, 94(3): 850-868. doi: 10.3969/j.issn.0001-5717.2020.03.013 焦养泉, 吴立群, 荣辉, 等, 2015. 聚煤盆地沉积学[M]. 武汉: 中国地质大学出版社: 1-436. 康玉柱, 2018. 我国低序次扭动构造体系控油模式研究[J]. 地质力学学报, 24(6): 737-747. doi: 10.12090/j.issn.1006-6616.2018.24.06.076 李荣西, 段立志, 陈宝赟, 等, 2011. 东胜砂岩型铀矿氧化酸性流体与还原碱性热液流体过渡界面蚀变带成矿作用研究[J]. 大地构造与成矿学, 35(4): 525-532. doi: 10.3969/j.issn.1001-1552.2011.04.006 李盛富, 陈洪德, 蔡根庆, 等, 2015. 巴什布拉克铀矿床物质成分[J]. 矿物学报, 35(3): 365-372. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201503013.htm 李文铅, 夏斌, 吴国干, 等, 2005. 新疆鄯善康古尔塔格蛇绿岩及其大地构造意义[J]. 岩石学报, 21(6): 1617-1632. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200506012.htm 梁明亮, 王宗秀, 李春麟, 等, 2020. 构造变形对海相页岩储层渗透率演化的影响[J]. 地质力学学报, 26(6): 840-851. doi: 10.12090/j.issn.1006-6616.2020.26.06.066 刘家仁, 2019. 褶皱构造应力场及其演化[J]. 地质力学学报, 25(3): 341-348. doi: 10.12090/j.issn.1006-6616.2019.25.03.031 郭玉乾, 方维萱, 李天成, 等. 2021. 老厂矿田坳头山断裂带矿段找矿研究[R]. 有色金属矿产地质调查中心. 马新华, 徐春春, 李国辉, 等, 2019. 四川盆地二叠系火成岩分布及含气性[J]. 石油勘探与开发, 46(2): 216-225. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902004.htm 潘伟尔, 杨起, 潘治贵, 1993. 湘赣中南部地区煤的岩浆热变质作用[J]. 现代地质, 7(3): 326-336. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199303009.htm 宋勇, 冯建伟, 戴俊生, 等, 2010. 前陆冲断带构造应力场与裂缝发育关系[J]. 地质力学学报, 16(3): 310-324. doi: 10.3969/j.issn.1006-6616.2010.03.008 汤良杰, 邱海峻, 云露, 等, 2014. 塔里木盆地多期改造晚期定型复合构造与油气战略选区[J]. 吉林大学学报(地球科学版), 44(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201401001.htm 王国强, 李向民, 徐学义, 等, 2014. 甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J]. 岩石学报, 30(6): 1685-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406011.htm 王国强, 李向民, 徐学义, 等, 2021. 北山造山带古生代蛇绿混杂岩研究现状及进展[J]. 地质通报, 40(1): 71-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202101008.htm 汪华, 沈浩, 黄东, 等, 2014. 四川盆地中二叠统热水白云岩成因及其分布[J]. 天然气工业, 34(9): 25-32. doi: 10.3787/j.issn.1000-0976.2014.09.004 王伟, 李文渊, 高满新, 等, 2018. 塔里木陆块西北缘萨热克砂岩型铜矿床构造-流体演化对成矿的制约[J]. 地质通报, 37(7): 1315-1324. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201807015.htm 邬光辉, 陈志勇, 郭群英, 2014. 碳酸盐岩变形带特征及其与油气关系: 以塔里木盆地下古生界为例[J]. 大地构造与成矿学, 38(3): 580-589. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201403008.htm 熊探宇, 姚鑫, 张永双, 2010. 鲜水河断裂带全新世活动性研究进展综述[J]. 地质力学学报, 16(2): 176-188. doi: 10.3969/j.issn.1006-6616.2010.02.007 杨开庆, 1984. 构造动力作用中地球化学作用[J]. 大地构造与成矿学, 8(4): 327-336. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK198404003.htm 杨宁, 吕修祥, 郑多明, 2005. 塔里木盆地火成岩对碳酸盐岩储层的改造作用[J]. 西安石油大学学报(自然科学版), 20(4): 1-4. doi: 10.3969/j.issn.1673-064X.2005.04.001 杨文心, 颜丹平, 邱亮, 等, 2018. 八渡复式背斜中-新生代变形序列及其对南盘江盆地形成演化的意义[J]. 地学前缘, 25(1): 33-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201801004.htm 袁宝印, 同号文, 温锐林, 等, 2009. 泥河湾古湖的形成机制及其与早期古人类生存环境的关系[J]. 地质力学学报, 15(1): 77-87. doi: 10.3969/j.issn.1006-6616.2009.01.007 张宝林, 吕古贤, 苏捷, 等, 2015. 云南个旧锡多金属矿田构造岩相成矿规律与西区找矿研究[J]. 地学前缘, 22(4): 78-87. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504010.htm 张海峰, 仝亚博, 王恒, 等, 2012. 印支地块思茅地区早白垩世古地磁结果及其构造意义[J]. 地质学报, 86(6): 923-939. doi: 10.3969/j.issn.0001-5717.2012.06.007 郑和荣, 蔡立国, 李铁军, 2007. 天山南北前陆盆地演化及褶皱-冲断带构造样式[M]. 北京: 地质出版社: 1-252. 邹才能, 陶士振, 周慧, 等, 2008. 成岩相的形成、分类与定量评价方法[J]. 石油勘探与开发, 35(5): 526-540. doi: 10.3321/j.issn:1000-0747.2008.05.002