Quantitative structure analysis of ore-bearing garnet-rich crystal in the Huogeqi mining area in Inner Mongolia and its significance
-
摘要: 晶体粒度分布(CSD)是定量化分析火成岩和变质岩结构的重要手段。在变质岩中测量的CSD提供了有关变质过程中晶体成核和生长速率、生长时间的定量信息。文章选取内蒙古霍各乞二号矿床含矿富石榴石岩样品中石榴子石晶体为研究对象,在GIS软件和R语言的支持下,应用空间点模式分析、CSD分析、空间最邻近分析、空间多距离分析、Fry分析等综合方法,探讨了晶体空间数据和点空间数据表征的微结构变化特征,将CSD曲线分段变化记录的信息与地质演化历史联系起来。分段的CSD曲线记录了变质事件的叠加。不同形式的晶体粒度分布直接反映了区域变质岩与接触变质岩演化历史的差异。由于接触变质作用的高温阶段持续时间较短,因此产生的CSD曲线是线性的,不受退火的影响。而区域变质作用涉及长时间升温及其之后的冷却阶段,所以最初的线性CSD后来被退火改造为钟形曲线。含矿富石榴石岩样品的核密度和CSD分析结果显示了两个晶体群密度。分析认为一类晶体群可能与造山过程中的区域变质活动有关,另一类晶体群可能与大面积区域变质期后发生在特定位置的岩体侵入迅速升温的接触热变质事件有关。Abstract: Crystal size distribution(CSD) is an important method to quantitatively analyze the structure of igneous rocks and metamorphic rocks. The CSD measured in metamorphic rocks provides quantitative information about crystal nucleation, growth rate and growth time during metamorphism. In this paper, garnet crystals from ore-bearing garnet-rich rock samples from the Huogeqi No. 2 deposit in Inner Mongolia are selected as the research object, supported by GIS software and R language. By using methods of spatial point pattern analysis, CSD analysis, spatial nearest neighbor analysis, spatial multi-distance analysis and Fry analysis, the microstructure variation characteristics of crystal spatial data and point spatial data are discussed. The segmented change record information of CSD curves is linked with the geological evolution history. The results show that the segmented CSD curves reflect the superimposed records of metamorphic events. The grain size distributions of different forms of crystals directly reflect the difference in the evolution history of regional metamorphic rocks and contact deformed rocks. The contact metamorphism involves a short period of high temperature, so the CSD produced is linear and not affected by annealing. The regional metamorphism involves long-term cooling at high temperature, so the initial linear CSD is later annealed and modified to bell shape. The nuclear density and CSD analysis results of ore-bearing garnet-rich samples also show two crystal group densities. It is considered that the differentiation of one crystal group may be related to the regional metamorphism in the orogenic process, while the other may be related to intrusive rocks that occurred in specific locations after regional metamorphism and activation.
-
Key words:
- garnet /
- quantitative structure analysis /
- crystal size distribution /
- CSD /
- Huogeqi
-
图 1 研究区大地构造位置及其区域地质简图
a—华北克拉通中、新元古代地层分布图(Hu et al., 2014);b—内蒙古狼山-渣尔泰山中元古代沉积构造(王思源和杨海明,1993);c—内蒙古狼山-渣尔泰山-白云鄂博矿床分布略图(Xu et al., 1998)
1—古生界;2—中元古界;3—古元古界色尔腾山群;4—太古界乌拉山群;5—印支期花岗岩;6—海西期侵入岩;7—加里东期侵入岩;8—元古宙及太古宙侵入岩;9—台缘断裂;10—吉兰泰断裂;11—断裂;12—矿床;13—地名Figure 1. Geotectonic location and simplified regional geological map of Langshan
图 2 霍各乞矿区地质图(底图第四系地形据http://www.google.cn/maps)
1—狼山群第二岩组第一岩段;2—狼山群第二岩组第一亚段;3—狼山群第二岩组第一岩段第二亚段;4—狼山群第二岩组第二岩段;5—狼山群第二岩组第三岩段;6—狼山群第二岩组第三岩段第一亚段;7—花岗岩;8—采样位置
Figure 2. Geological map of the Huogeqi mining area (the base map is from http://www.google.cn/maps)
表 1 沿逆时针方向相对X轴测量角度统计表
Table 1. Statistical table for measuring angle relative to X axis in counterclockwise direction
角度/(°) 数量/个 角度/(°) 数量/个 角度/(°) 数量/个 角度/(°) 数量/个 角度/(°) 数量/个 5 20 45 17 85 13 125 17 165 17 15 17 55 20 95 16 135 20 175 14 25 15 65 15 105 16 145 17 35 13 75 16 115 13 155 22 注:数据来自样品原始数据CSDCorrections 1.6处理生成 -
BADDELEY A, TURNER R, 2005. spatstat:an R package for analyzing spatial point patterns[J]. Journal of Statistical Software, 12(6):1-42. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0211395373/ BAU M, 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems:evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions To Mineralogy and Petrology, 123(3):323-333. http://cn.bing.com/academic/profile?id=21b3da153c79231451b9f222b56835a7&encoded=0&v=paper_preview&mkt=zh-cn BAXTER E F, CADDICK M J, AGUE J J, 2013. Garnet:common mineral, uncommonly useful[J]. Elements, 9(6):415-419. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229223440/ BERGER A, BRODHAG S H, HERWEGH M, 2010. Reaction-induced nucleation and growth v. grain coarsening in contact metamorphic, impure carbonates[J]. Journal of Metamorphic Geology, 28(8):809-824. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=96ec3f9131067f60984360ad5a1b52e5 BERGER A, HERWEGH M, SCHWARZ J O, et al., 2011. Quantitative analysis of crystal/grain sizes and their distributions in 2D and 3D[J]. Journal of Structural Geology, 33(12):1751-1763. http://cn.bing.com/academic/profile?id=3f872de859383a39342a03f51d66510a&encoded=0&v=paper_preview&mkt=zh-cn CHENG H, ZHOU Z Y, NAKAMURA E, 2008. Crystal-size distribution and composition of garnets in eclogites from the Dabie orogen, central China[J]. American Mineralogist, 93(1):124-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=am.2008.2556 CLARK P J, EVANS F C, 1954. Distance to nearest neighbor as a measure of spatial relationships in populations[J]. Ecology, 35(4):445-453. doi: 10.2307-1931034/ DAI Z X, SHENG J F, BAI Y, et al., 2005. Distribution and potentiality of lead and zinc resources in the world[M]. Beijing:Seismological Press. (in Chinese) EBERL D D, DRITS V A, SRODON J, 1998. Deducing growth mechanisms for minerals from the shapes of crystal size distributions[J]. American journal of Science, 298(6):499-533. http://cn.bing.com/academic/profile?id=f5e394aa3454c6cac42a370649ad6810&encoded=0&v=paper_preview&mkt=zh-cn EBERL D D, KILE D E, DRITS V A, 2002. On geological interpretations of crystal size distributions:constant vs. proportionate growth[J]. American Mineralogist, 87(8-9):1235-1241. http://cn.bing.com/academic/profile?id=81ab47be04a2f18fa920bbab62e487d9&encoded=0&v=paper_preview&mkt=zh-cn EHRLICH R, VOGEL T A, WEINBERG B, et al., 1972. Textural variation in petrogenetic analyses[J]. Geological Society of America Bulletin, 83(3):665-676. http://cn.bing.com/academic/profile?id=ea3e51cfcbaafdaa0be951a230f08a68&encoded=0&v=paper_preview&mkt=zh-cn FRY N, 1979. Random point distributions and strain measurement in rocks[J]. Tectonophysics, 60(1-2):89-105. http://cn.bing.com/academic/profile?id=47c471a47aca8f3cb1b9e11912a16a77&encoded=0&v=paper_preview&mkt=zh-cn GASPARIK T, 1989. Transformation of enstatite-diopside-jadeite pyroxenes to garnet[J]. Contributions to Mineralogy and Petrology, 102(4):389-405. http://cn.bing.com/academic/profile?id=9cbc7d1b9f5df52d00b8449622168f36&encoded=0&v=paper_preview&mkt=zh-cn HAYS S, 2011. The crystal nucleation and growth in metamorphic processes based on the Crystal Size Distributions (CSD) of mineral phases. The Grenville province, Ontario, Canada[D]. Buffalo, New York: State University of New York at Buffalo. HIGGINS M D, 1994. Numerical modeling of crystal shapes in thin sections:estimation of crystal habit and true size[J]. American Mineralogist, 79(1-2):113-119. http://cn.bing.com/academic/profile?id=b00f384ad06bbb8ed25b6510ed20bab4&encoded=0&v=paper_preview&mkt=zh-cn HIGGINS M D, 2000. Measurement of crystal size distributions[J]. American Mineralogist, 85(9):1105-1116. doi: 10.1016-0009-2509(81)85040-3/ HIGGINS M D, 2006. Verification of ideal semi-logarithmic, lognormal or fractal crystal size distributions from 2D datasets[J]. Journal of Volcanology and Geothermal Research, 154(1-2):8-16. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023678072/ HU J M, GONG W B, WU S J, et al., 2014. LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 255:756-770. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3b6d224e161ba2340eff59b6fde5125 HUANG C K, BAI Z, ZHU Y S, et al., 2001. Copper deposit of China[M]. Beijing:Geological Publishing House. (in Chinese) JIN Z D, LI Y, ZHU J C, 1997. A discussion on hot water sedimentary rocks in Huogeqi Copper-polymetallic ore deposit[J]. Geology of Inner Mangolia(2):22-28. (in Chinese with English abstract) KELLY E D, CARLSON W D, KETCHAM R A, 2013. Magnitudes of departures from equilibrium during regional metamorphism of porphyroblastic rocks[J]. Journal of Metamorphic Geology, 31(9):981-1002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/jmg.12053 KETCHAM R A, CARLSON W D, 2012. Numerical simulation of diffusion-controlled nucleation and growth of porphyroblasts[J]. Journal of Metamorphic Geology, 30(5):489-512. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c763e0e4cd12c193698998e3d486e9d KRETZ R, 1966. Grain-size distribution for certain metamorphic minerals in relation to nucleation and growth[J]. The Journal of Geology, 74(2):147-173. http://cn.bing.com/academic/profile?id=5b9cab0bb3c05e14cbd8f43fb1b3df10&encoded=0&v=paper_preview&mkt=zh-cn LAING W P, MARJORIBANKS R W, RUTLAND R W R, 1978. Structure of the Broken Hill mine area and its significance for the genesis of the orebodies[J]. Economic Geology, 73(6):1112-1136. http://cn.bing.com/academic/profile?id=9686359fb28755b1378ea4fadbf5615a&encoded=0&v=paper_preview&mkt=zh-cn LISITSIN V, 2015. Spatial data analysis of mineral deposit point patterns:applications to exploration targeting[J]. Ore Geology Reviews, 71:861-881. http://cn.bing.com/academic/profile?id=18ff1159e417ab2149592df958d441ec&encoded=0&v=paper_preview&mkt=zh-cn LISITSIN V A, PORWAL A, MCCUAIG T C, 2014. Probabilistic fuzzy logic modeling:quantifying uncertainty of mineral prospectivity models using Monte Carlo simulations[J]. Mathematical Geosciences, 46(6):747-769. http://cn.bing.com/academic/profile?id=518e00c669d8bdff53f11e9ee403f6e4&encoded=0&v=paper_preview&mkt=zh-cn LIU Y, WANG W L, TENG X J, et al., 2019. Geochemistry and Hf isotopes characteristics and geological significance of Latest Early Permian granodiorite of Langshan Area, Inner Mongolia[J]. Advances in Earth Science, 34(4):366-381. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201904004 LU S N, YANG C L, LI H K, et al., 2002. A group of rifting events in the terminal paleoproterozoic in the North China Craton[J]. Gondwana Research, 5(1):123-131. doi: 10.1016-S1342-937X(05)70896-0/ MAHAR E M, BAKER J M, POWELL R, et al., 1997. The effect of Mn on mineral stability in metapelites[J]. Journal of Metamorphic Geology, 15(2):223-238. doi: 10.1111-j.1525-1314.1997.00011.x/ MARSH B D, 1988. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization[J]. Contributions to Mineralogy and Petrology, 99(3):277-291. doi: 10.1007-BF00371933/ MARSH B D, 2007. Crystallization of silicate magmas deciphered using crystal size distributions[J]. Journal of the American Ceramic Society, 90(3):746-757. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1551-2916.2006.01473.x MVLLER T, BAUMGARTNER L P, FOSTER JR C T, et al., 2009. Crystal size distribution of periclase in contact metamorphic dolomite marbles from the southern Adamello Massif, Italy[J]. Journal of Petrology, 50(3):451-465. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8bab3577ccbae01c7674af50654d44f6 PARSA M, MAGHSOUDI A, YOUSEFI M, 2018. Spatial analyses of exploration evidence data to model skarn-type copper prospectivity in the Varzaghan district, NW Iran[J]. Ore Geology Reviews, 92:97-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6301dd8de7a0069d65aafe24a4a1ec2 PENG R M, ZHAI Y S, HAN X F, et al., 2007. Sinsedimentry volcanic activities in the cracking process of the Mesoproterozoic aulacogen of passive continental margin in Langshan-Zhaertai area, Inner Mongolia, and its indicating significance[J]. Acta Petrologica Sinica, 23(5):1007-1017. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200705014 PENG R M, ZHAI Y S, WANG Z G, et al., 2006. Characteristics and exploration of submarine sedex deposits in the Langshan-Zhaertai ore concentration area, Inner Mongolia[J]. Mineral Deposits, 25(S1):221-224. (in Chinese with English abstract) PENG R S, ZHAI Y S, WANG J P, et al., 2010. Discovery of Neoproterozoic acid volcanic rock in the South-western section of Langshan, Inner Mongolia[J]. Chinese Science Bulletin, 55(26):2611-2620. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201026008 PI Q H, LIU C Z, CHEN Y L, et al., 2010. Formation epoch and genesis of intrusive rocks in Huogeqi orefield of Inner Mongolia and their relationship with copper mineralization[J]. Mineral Deposits, 29(3):437-451. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201003006 RIPLEY B D, 1977. Modelling spatial patterns[J]. Journal of the Royal Statistical Society. Series B (Methodological), 39(2):172-212. http://d.old.wanfangdata.com.cn/Periodical/ygxb200601015 ROZENDAAL A, STUMPFL E F, 1984. Mineral chemistry and genesis of Gamsberg zinc deposit, South Africa[J]. Transactions of the Institution of Mining and Metallurgy, 93:B161-B175. http://cn.bing.com/academic/profile?id=120e8dde218fdaba009059698754f067&encoded=0&v=paper_preview&mkt=zh-cn RYAN P J, LAWRENCE A L, LIPSON R D, et al., 1986. The Aggeneys base metal sulphide deposits, Namaqualand district[M]//ANHAEUSSER C R, MASKE S. Mineral Deposits of Southern Africa. Johannesburg: Geological Society of South Africa: 1447-1473. SYMMES G H, FERRY J M, 1992. The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism[J]. Journal of Metamorphic Geology, 10(2):221-237. doi: 10.1111-j.1525-1314.1992.tb00080.x/ TEWHEY J D, 1975. The controls of biotite-cordierite-chlorite-garnet equilibria in the contact aureole of the cupsuptic pluton, West Central Maine and the Two-phase region in the CaO-SiO2 System: Experimental data and thermodynamic analysis[D]. Providence: Brown University. VERRECCHIA E P, 2003. Foreword:image analysis and morphometry of geological objects[J]. Mathematical Geology, 35(7):759-762. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214958123/ WALTERS S, BAILEY A, 1998. Geology and mineralization of the Cannington Ag-Pb-Zn deposit:an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia[J]. Economic Geology, 93(8):1307-1329. http://cn.bing.com/academic/profile?id=b27c77bebbc8ebf82095096b84f244c0&encoded=0&v=paper_preview&mkt=zh-cn WANG S Y, YANG H M, 1993. Research on effusion metallogeny of the Langshan orogenic belt inner mongolia[M]. Wuhan:China University of Geosciences Press. (in Chinese) XU B, CHEN B, 1997. Framework and evolution of the middle Paleozoic orogenic belt between Siberian and North China Plates in northern Inner Mongolia[J]. Science in China Series D:Earth Sciences, 40(5):463-469. http://cn.bing.com/academic/profile?id=4dee46f224d634e9d8dad832d0049062&encoded=0&v=paper_preview&mkt=zh-cn XU G Z, BIAN Q T, ZHOU S P, 1998. Geo-tectonic conditions of the formation of Proterozoic large and superlarge ore deposits along northwestern margin of North China Plate[J]. Science in China Series D:Earth Sciences, 41(1):13-20. doi: 10.1007-BF02875633/ YANG Z F, LUO Z H, LU X X, 2010. Quantitative textural analysis of igneous rocks and the kinetics and dynamics of magma solidification processes[J]. Earth Science Frontiers, 17(1):246-266. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201001021 YU J J, YANG H M, YE H S, 1993. Geological and geochemical characteristics and material sources of the Huogeqi Copper-polymetallic deposit, Inner Mongolia[J]. Mineral Deposits, 12(1):67-76. (in Chinese with English abstract) ZHAI M G, 2019. Tectonic evolution of the North China Craton[J]. Journal of Geomechanics, 25(5):722-745. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201309003 ZHAI M G, SANTOSH M, 2013. Metallogeny of the North China Craton:link with secular changes in the evolving Earth[J]. Gondwana Research, 24(1):275-297. http://cn.bing.com/academic/profile?id=27277bba31bf94b9af6e059c9c7dbacf&encoded=0&v=paper_preview&mkt=zh-cn ZHAI Y S, WANG J P, DENG J, et al., 2008. Temporal-spatial evolution of metallogenic systems and its significance to mineral exploration[J]. Geoscience, 22(2):143-150. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200802001 ZHANG Y Q, DONG S W, 2019. East Asia multi-plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5):613-641. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201905004 ZHAO Y F, HU J M, GONG W B, et al., 2019. Tectonic framework and deformation events in the central Trans-North China Tectonic Belt during the Late Paleoproterozoic[J]. Earth Science Frontiers, 26(2):104-119. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201902008 ZHONG R C, LI W B, CHEN Y J, et al., 2012. Ore-forming conditions and genesis of the Huogeqi Cu-Pb-Zn-Fe deposit in the northern margin of the North China Craton:evidence from ore petrologic characteristics[J]. Ore Geology Reviews, 44:107-120. http://cn.bing.com/academic/profile?id=c454c02c14e8df2e762298aed37f11bd&encoded=0&v=paper_preview&mkt=zh-cn 戴自希, 盛继福, 白冶, 等, 2005.世界铅锌资源的分布与潜力[M].北京:地震出版社. 黄崇轲, 白冶, 朱裕生, 等, 2001.中国铜矿床(上册)[M].北京:地质出版社. 金章东, 李英, 朱金初, 1997.霍各乞铜多金属矿区热水沉积岩类初探[J].内蒙古地质(2):22-28. http://www.cnki.com.cn/Article/CJFDTotal-NMGZ199702002.htm 刘洋, 王文龙, 滕学建, 等, 2019.内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、Hf同位素特征及其地质意义[J].地球科学进展, 34(4):366-381. http://www.cnki.com.cn/Article/CJFDTotal-DXJZ201904007.htm 彭润民, 翟裕生, 王志刚, 等, 2006.内蒙古狼山-渣尔泰山矿集区海底喷流成矿特征与勘查[J].矿床地质, 25(S1):221-224. http://d.old.wanfangdata.com.cn/Conference/6278240 彭润民, 翟裕生, 韩雪峰, 等, 2007.内蒙古狼山-渣尔泰山中元古代被动陆缘裂陷槽裂解过程中的火山活动及其示踪意义[J].岩石学报, 23(5):1007-1017. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200705014 彭润民, 翟裕生, 王建平, 等, 2010.内蒙狼山新元古代酸性火山岩的发现及其地质意义[J].科学通报, 55(26):2611-2620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201026008 皮桥辉, 刘长征, 陈岳龙, 等, 2010.内蒙古霍各乞海西期侵入岩形成时代、成因及其与铜矿体的关系[J].矿床地质, 29(3):437-451. http://d.old.wanfangdata.com.cn/Periodical/kcdz201003006 王思源, 杨海明, 1993.狼山造山带喷溢成矿研究[M].武汉:中国地质大学出版社. 徐备, 陈斌, 1997.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J].中国科学(D辑), 27(3):227-232. http://www.cnki.com.cn/Article/CJFDTotal-JDXK199703005.htm 杨宗锋, 罗照华, 卢欣祥, 2010.定量化火成岩结构分析与岩浆固结的动力学过程[J].地学前缘, 17(1):246-266. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001021 余金杰, 杨海明, 叶会寿, 1993.霍各乞铜多金属矿床的地质-地球化学特征及矿质来源[J].矿床地质, 12(1):67-76. http://www.cqvip.com/Main/Detail.aspx?id=1110662 翟明国, 2019.华北克拉通构造演化[J].地质力学学报, 25(5):722-745. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190507&journal_id=dzlxxb 翟裕生, 王建平, 邓军, 等, 2008.成矿系统时空演化及其找矿意义[J].现代地质, 22(2):143-150. http://d.old.wanfangdata.com.cn/Periodical/xddz200802001 张岳桥, 董树文, 2019.晚中生代东亚多板块汇聚与大陆构造体系的发展[J].地质力学学报, 25(5):613-641. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190503&journal_id=dzlxxb 赵远方, 胡健民, 公王斌, 等, 2019.华北克拉通中部带中段古元古代构造格架与主要变形事件研究[J].地学前缘, 26(2):104-119. http://d.old.wanfangdata.com.cn/Periodical/dxqy201902008