留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实践中发展的最大有效力矩准则

郑亚东 张进江 王涛

郑亚东, 张进江, 王涛, 2009. 实践中发展的最大有效力矩准则. 地质力学学报, 15 (3): 209-217.
引用本文: 郑亚东, 张进江, 王涛, 2009. 实践中发展的最大有效力矩准则. 地质力学学报, 15 (3): 209-217.
ZHENG Ya-dong, ZHANG Jin-jiang, WANG Tao, 2009. THE MAXIMUM-EFFECTIVE-MOMENT CRITERION DEVELOPING IN PRACTICE. Journal of Geomechanics, 15 (3): 209-217.
Citation: ZHENG Ya-dong, ZHANG Jin-jiang, WANG Tao, 2009. THE MAXIMUM-EFFECTIVE-MOMENT CRITERION DEVELOPING IN PRACTICE. Journal of Geomechanics, 15 (3): 209-217.

实践中发展的最大有效力矩准则

基金项目: 

国家自然科学基金项目 90714006

国家自然科学基金项目 40872133

详细信息
    作者简介:

    郑亚东(1936-), 男, 北京大学教授, 构造地质学专业。E-mail:ydzheng@pku.edu.cn

  • 中图分类号: P578.2, P588.3

THE MAXIMUM-EFFECTIVE-MOMENT CRITERION DEVELOPING IN PRACTICE

  • 摘要: 最大有效力矩准则发表以来, 不断得到新的野外观察和实验结果的验证, 正在得到国内外同行的支持。岩石的变形行为取决于自身力学性质、构造层次(包括温度、压力、流体压力等因素)和应变速率。浅构造层次中平面菱网状构造和剖面共轭膝褶带, 钝角面对缩短方向, 受最大有效力矩准则控制, 是对慢应变速率的构造响应。证明应变速率对变形行为的控制程度不亚于构造层次。韧、脆性构造的共存意味着构造演化过程为快、慢应变速率的交替。

     

  • 图  1  最大有效力矩准则

    (阴影区囊括全部天然和实验共轭变形带的半夹角)
    Meff—有效力矩; σ1-σ3—差应力, 其大小等于屈服强度; L—单位长度; α—给定平面与σ1轴间夹角

    Figure  1.  The maximum effective moment criterion (MEMC)

    图  2  不同尺度的共轭剪切带

    (a)单晶石英沿光轴压缩实验形成的微观共轭剪切带[13]; (b)云母鱼中的共轭伸展褶劈理; (c)英格兰波尔比钾盐矿支撑柱中的共轭屈服带[14]; (d)加拿大地盾中的共轭韧性剪切带[15]

    Figure  2.  Conjugate shear zones on different scales

    图  3  墨西哥湾深水区原解释的高角逆断层(上)和现解释的膝褶带(下) [18]

    Figure  3.  Old (upper)and new (lower)explanations for seismic sections in Northwestern deep-water Gulf of Mexico

    图  4  柴达木盆地油泉子构造新近系粉砂质石膏片岩

    Figure  4.  Silty gypsum schist on the northern flank of the Oil-Spring Dome in Qaidam Basin

    图  5  内蒙古赤峰篓子店断层泥中S/C组构与C′和共轭C′面理

    Figure  5.  S/C fabrics and conjugate extensional cr enulation cleavages in fault-gouge

    图  6  中亚与青藏区主要共轭走滑断层间的夹角

    (藏中断层走向玫瑰图(右下图)据左下图[26]资料编制)

    Figure  6.  Angles between major strike-slip faults in mid-Asia and Qinghai-Tibet

  • [1] Zheng Y, Wang T, Ma M, et al.Maximum effective moment criterion and the origin of low-angle normal faults[J].J.Struct. Geol., 2004, 26:271 (285. doi: 10.1016/S0191-8141(03)00079-8
    [2] 《地球科学大辞典》编委会.地球科学大词典[M].北京:地质出版社, 2005. 1~823.

    Editorial Committee of 《Dictionary of Earth Sciences》.Dictionary of Earth Sciences[M].Beijing:Geological Publishing House, 2005.1~823.
    [3] Twiss R J, Moores E M, Structural Geology (Second Edition)[M].New York:W H Freeman and Company, 2005.
    [4] 曾佐勋, 樊光明.构造地质学(第三版)[M].武汉:中国地质大学出版社, 2006.

    ZENG Zuo-xun, FAN Guang-ming.Structural Geology (Third Edition)[M].Wuhan:China University of Geosciences Press, 2006.
    [5] 中国地质学会构造地质学与地球动力学专业委员会. 构造地质学的成就与前景[A]. 见: 中国科学技术协会, 中国地质学会编. 2006~2007地质学学科发展报告[C]. 北京: 中国科学技术出版社, 2007. 67~78.

    Structural Geology and Geodynamics Professional Committee of Geological Society of China. Achievement and prospects on structural geology[A]. In: China Association for Science and Technology, Geological Society of China. 2006~2007 Report on Advances in Geological Sciences[C]. Beijing: China Science and Technology Press, 2007. 67~78.
    [6] Neves S P, da Silva J M R, Mariano G.Oblique lineations in orthogneisses and supracrustal rocks:vertical partitioning of strain in a hot crust (eastern Borboroma Province, NE Brazil)[J].J.Structural Geology, 2005, 27 (8):1513~1527. doi: 10.1016/j.jsg.2005.02.002
    [7] Guo Z J, Shi H Y, Zhang Z C, et al.The tectonic evolution of the north Tianshan paleo-oceanic crust inferred from spreading structures and Ar-Ar dating of the Hongliuge ophiolite, NW China[J].Acta Petrologica Sinica, 2006, 22 (1):75~102. http://www.oalib.com/paper/1472073
    [8] Marshak S, Alkmin F F, Whittington A, et al.Extensional collapse in the Neoproterozoic Aracual orogen, eastern Brazil:a setting for reactivation of a symmetric crenulation cleavage[J].Journal of Structural Geology, 2006, 28 (1):129~147. doi: 10.1016/j.jsg.2005.09.006
    [9] Yang T N, Wang Y, Li J Y, et al.Vertical and horizontal strain partitioning of the central Tianshan (NW China):Evidence fr om structures and Ar40-Ar39 geochronology[J].Journal of Structural Geology, 2007, 29 (10):1605~1621. doi: 10.1016/j.jsg.2007.08.002
    [10] King D S, Klepeis K A, Goldstien AG, et al.The initiation and evolution of the transpressional Straight River shear zone, Central Fjordland, New Zealand[J].Journal of Structural Geology, 2008, 30 (4):410~430. doi: 10.1016/j.jsg.2007.12.004
    [11] Fowler A, Osman A F.The Sha'it-Nugrus Shear zone separating Central and South Eastern Deserts, Egypt:A post-arc collision low-angle normal ductile shear zone[J].Journal of African Earth S ciences, 2009, 52 (1~2):16~32. http://www.sciencedirect.com/science/article/pii/S1464343X08001076
    [12] Kurz G.A, Northrup C J.Structural analysis of mylonitic rocks in the Cougar Creek Complex, Oregon-Idaho using the porphyroclast hyperbolic distribution method, and potential use of SC' -type extensional shear bands as quantitative vorticity indicators[J].Journal of Structural Geology, 2008.30 (8):1005~1012. doi: 10.1016/j.jsg.2008.04.003
    [13] Vernooij M G C, Kunze K, den Brok B.Brittle'shear zones in experimentally deformed quartz single crystals[J].Journal of Structural Geology, 2006, 28 (7):1292~1306. doi: 10.1016/j.jsg.2006.03.018
    [14] Watterson J.The future of failure:stress or strain?[J] Journal of Structural Geology, 1999, 21:139 (148. doi: 10.1016/S0191-8141(98)00111-4
    [15] Park RG.Shear-zone deformation and bulk strain in granite-greenstone terrain of the Western Superior Province[J].Canada. Pr ecambrian Research, 1981, 14:31~47. http://www.sciencedirect.com/science/article/pii/0301926881900346
    [16] Sibson R H.Fault rocks and fault mechanisms[J].Journal of the Geological Society, 1977, 133 (3):191~213. doi: 10.1144/gsjgs.133.3.0191
    [17] Ujiie K, Malman A J, Sanchez-Gomez M.Origin of deformation bands in argillaceous sediments at the toe of the Nankai accretionary prism, southwest Japan[J].J.Struct.Geol., 2004, 26:221~231. doi: 10.1016/j.jsg.2003.06.001
    [18] Camerlo R H, Benson E F.Geometric and seismic interpretation of Perdido fold belt:Northwestern deep-water Gulf of Mexico [J].AAPG Bulletin, 2006, 90 (3):363~386. doi: 10.1306/10120505003
    [19] 郑亚东, 王涛, 王新社.最大有效力矩准则的理论与实践[J].北京大学学报(自然科学版), 2007, 43 (2): 145~156. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjdz200702000&dbname=CJFD&dbcode=CJFQ

    ZHENG Ya-dong, WANG Tao, WANG Xin-she.Theory and Practice of the Maximum Effective Moment Criterion(MEMC)[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2007, 43 (2):145~156. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bjdz200702000&dbname=CJFD&dbcode=CJFQ
    [20] 郑亚东, 莫午零, 张文涛, 等.柴达木盆地油气勘探的新思路[J].石油勘探与开发, 2007, 34 (1):13~18. http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK200701003.htm

    ZHENG Ya-dong, MO Wu-ling, ZHENG Wen-tao, et al.A new idea for petroleum exploration in Qaidam Basin[J]. Petroleum Exploration and Development, 2007, 34 (1):13~18. http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK200701003.htm
    [21] Paterson M S, Weiss LE.Experimental deformation and folding in phyllite[J].Geological Society of America Bulletin, 1966, 77:343 (374. doi: 10.1130/0016-7606(1966)77[343:EDAFIP]2.0.CO;2
    [22] Ramsay J G, Huber M I.The Techniques of Modern Structural Geology Fractures.Volume 2:Folds and Fractures[M].New York:Academic Press, 1987.
    [23] Tapponnier P, Molnar P.Slip-line field theory and large-scale continental tectonics[J].Nature, 1976, 264:319~324. doi: 10.1038/264319a0
    [24] Hill R.The Mathematical Theory of Plasticity[M].Oxford:Oxford University Press/Clarendon Press, 1950.
    [25] Tapponnier P, Peltzer G., Le Dain A Y, et al., Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J].Geology, 1982, 10:611~616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    [26] Kapp P, Taylor M, Stockli D, et al.Development of active low-angle normal fault systems during orogenic collapse:insight from Tibet[J].Geology, 2008, 36:7~10. doi: 10.1130/G24054A.1
    [27] Wright T J, Parsons B, England P C, et al.InSAR observations of low slip rates on the major faults of west Tibet[J].Science, 2004, 305:236~239. doi: 10.1126/science.1096388
    [28] McKenzie D P.Plate tectonics of the Mediterranean region[J].Nature, 1970, 226:239~243. doi: 10.1038/226239a0
    [29] McKenzie D P.Active tectonics of the Mediterranean region[J].Geophysical Journal International, 1972, 30 (2):109~185. doi: 10.1111/j.1365-246X.1972.tb02351.x
    [30] McClusky S, Balassanian S, Barka A, et al.Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus[J].Journal of Geophysical Research, 2000, 105 (B3), 5695~5720. doi: 10.1029/1999JB900351
  • 加载中
图(6)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  79
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-19
  • 刊出日期:  2009-09-28

目录

    /

    返回文章
    返回