Research on weak information extraction methods in the exploration of hidden Carlin-type gold deposits in southwestern Guizhou, China
-
摘要: 黔西南地区是中国卡林型金矿的集中分布区,金矿成矿地质条件优越,找矿潜力巨大。但区内浅表金矿资源已基本找寻殆尽,找矿工作全面进入“攻深找盲”阶段。隐伏金矿由于矿体埋深较大,地表的矿化信息必然非常微弱甚至没有信息显示,深部成矿信息获取困难。如何识别并获取与深部成矿作用有关的地球化学信息,成为制约找矿突破的关键因素。黔西南卡林型金矿的形成及就位主要受背斜及断裂构造的控制,元素地球化学的分布、分异和成矿同样受到构造应力的影响,深部成矿信息通过断裂、裂隙与浅部及地表相联系,浅部构造岩石中的地球化学异常能在一定程度上反映深部的矿致异常。因此,以构造地球化学理论为基础,分析黔西南地区成矿地质条件和相应元素组合的迁移和富集规律,对卡林型金矿隐伏矿找矿地球化学弱信息提取的关键环节进行深入剖析,总结构造地球化学弱信息提取方法指标参数,有效提取深部成矿元素沿构造裂隙向上渗滤扩散形成的弱异常,对深部隐伏矿进行初步定位预测。弱信息识别及提取的相关研究成果对丰富黔西南地区卡林型金矿的成矿理论具有一定的学术价值,同时使用该方法在黔西南金矿隐伏矿找矿上能有效圈定并优选找矿靶区,对落实新一轮找矿突破战略行动任务具有积极的现实意义。Abstract:
Objective The southwestern Guizhou region is a concentrated distribution area of Carlin-type gold deposits in China, with superior geological conditions for gold mineralization and enormous potential for mineral exploration. However, the shallow gold resources in the region have been largely exhausted, and the exploration work has entered the stage of "exploration in deep and blind areas". Due to the deep burial depth of the ore body, the mineralization information on the surface of hidden gold mines is inevitably very weak or may not even be displayed, making it challenging to obtain deep mineralization information. How to accurately identify and obtain geochemical information related to deep mineralization has become a key factor restricting exploration breakthroughs. Methods Conventional geochemical prospecting methods are susceptible to the influence of surrounding rocks or cover materials, making it difficult to acquire information related to deep mineralization. The formation and emplacement of Carlin-type gold deposits in southwestern Guizhou are mainly controlled by anticlines and fault structures, and the distribution, differentiation, and mineralization of elemental geochemistry are also influenced by tectonic stress. Based on the theory of tectonic geochemistry, this study conducts an in-depth analysis of the geological conditions for gold mineralization and the migration and enrichment patterns of corresponding element combinations in the southwestern Guizhou region. The sampling principles, sampling media, and data selection of weak information extraction in tectonic geochemistry are restricted to a certain extent. Various high permeability conductive shallow structural rock samples are collected to test their ore-forming indicator elements. This method can identify and extract weak information on the formation of deep-hidden ore bodies on the surface. Results Deep mineralization information is related to the shallow and surface through faults and fractures, and the geochemical anomalies in the shallow structural rocks can somewhat reflect the deep mining-induced anomalies. The sampling object for weak information extraction in tectonic geochemistry is tectonic altered rocks, which highlights information related to mineralization and weakens other interference information, thus enabling the extraction of weak geochemical anomalies formed by deep-hidden mineralization on the surface. In the formation process of hydrothermal deposits, the structure is not only a good channel for the migration of ore-forming fluids but also a favorable space for mineral precipitation and enrichment of ore-forming. The element geochemical anomalies obtained from collecting structural rock samples can indicate the ore-forming properties of the corresponding structure, indirectly indicating the ore-forming center and providing a scientific basis for the preliminary positioning prediction and engineering verification of hidden deposits. The weak information extraction method of structural geochemistry has been proven effective in the exploration of hidden Carlin-type gold deposits in southwestern Guizhou. This method can be extended to more exploration practices of hidden deposits in hydrothermal deposits, showing broad application prospects. Conclusion The weak information extraction technology of structural geochemistry is applicable to the exploration of hydrothermal deposits, which can effectively extract weak mineralization information of deep-hidden deposits, help invert the structural control type, infer the approximate occurrence of hidden deposits, select key exploration target areas, and conduct preliminary positioning and prediction of hidden deposits. Significance The research results on identifying and extracting weak geochemical information have specific academic value for enriching the ore-forming theory of Carlin-type gold deposits in southwestern Guizhou. At the same time, this method can effectively delineate and optimize the exploration target areas for hidden hydrothermal mineral deposits, which has positive practical significance for implementing a new round of breakthrough strategic action tasks in mineral exploration. -
图 1 黔西南地区断裂−褶皱体系(据骆地伟等,2016修改)
Figure 1. Fault–fold system in southwestern Guizhou (modified aftar Luo et al., 2016)
图 2 卡林型金矿多层次构造滑脱成矿系统示意图(据刘建中等,2020修改)
Figure 2. Multi-level tectonic detachment mineralization system of Carlin-type gold deposits (modified aftar Liu et al., 2020)
图 3 黔西南水系沉积物金异常与矿床位置图(据冯济舟等,2008修改)
Figure 3. Gold anomaly and deposit location map of water system sediments in southwestern Guizhou (modified aftar Feng et al., 2008)
图 5 采样节点范围内的采样介质示意图
a—采样介质为节理裂隙充填物;b、c—采样介质为构造蚀变体中硅化岩石;d—采样介质为断层泥;e—采样介质为蚀变的角砾岩;f—采样介质为穿层脉体;g—h—采样介质为断层破碎带上的胶结物及断层角砾
Figure 5. Schematic diagram of sampling medium within the sampling node range
(a) Joint fissure filling material; (b, c) Silicified rocks in structural alteration variants; (d) Fault gouge; (e) Altered breccia; (f)Transdermal vein; (g, h) Cement and fault breccia on the fault fracture zone
图 6 者相二金矿43勘查线剖面图(据何金坪,2021修改)
Figure 6. Section map of Exploration Line 43 of Zhexiang'er Gold Mine (modified aftar He., 2021)
图 7 包谷地背斜构造地球化学异常平面示意图(据谭礼金等,2017修改)
Figure 7. Plan of geochemical anomalies in the Baogudi anticline structure (modified aftar Tan et al., 2017)
图 8 土壤地球化学测量与构造地球化学测量圈定的金异常对比图(据谭礼金等,2017;李松涛等,2022修改)
a—土壤地球化学测量;b—构造地球化学测量
Figure 8. Comparison charts of gold anomalies delineated by soil geochemical measurements and structural geochemical measurements (modified aftar Tan et al., 2017;Li et al., 2022)
(a) Soil geochemical measurements; (b) Tectonic geochemical measurements
-
[1] CLINE J S, HOFSTRA A H, MUNTEAN J L, et al. , 2005. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models[M]//HEDENQUIST J W, THOMPSON J F H, GOLDFARB R J, et al. One hundredth anniversary volume. Littleton: Society of Economic Geologists: 451-484. [2] CLINE J S, 2018. Nevada's Carlin-type gold deposits: what we've learned during the past 10 to 15 years[M]//MUNTEAN J L. Diversity in Carlin-style gold deposits. Colorado: Society of Economic Geologists: 7-37. [3] FANG W X, GUO Y Q, JIA R X, et al. , 2021. On relationship between the superimposed mineralization systems and the zoning patterns of vertical tectonic lithofacies in the Gejiu concentration area of Sn-Cu-W and three rare metals in Yunnan[J]. Journal of Geomechanics, 27(4): 557-584. (in Chinese with English abstract) [4] FENG J Z, YANG M Y, HE S L, et al. , 2008. Geochemical Atlas in Guizhou Province[M]. Beijing: Geological Publishing House: 1-61. . (in Chinese with English abstract) [5] GONG H S, HAN R S, LI Z T, et al. , 2020. Element association anomaly of tectonites and prediction of concealed deposit in the Xiaozhuqing exploration area on the periphery of Huize lead-zinc mine area, northeastern Yunnan Province[J]. Journal of Geomechanics, 26(3): 419-431. (in Chinese with English abstract) [6] GUO T, LV G X, DENG J, et al. , 2003. Variational characteristics of elements with tectonic stress: an example from Jiaojia gold deposit[J]. Journal of Geomechanics, 9(2): 183-190. (in Chinese with English abstract) [7] HE J P, LIU G F, LI Y H, et al. , 2021. Exploration Report on Zhexiang'er Gold Mine in Zhenfeng County, Guizhou Province[R]. Guiyang: 105 Geological Brigade of Guizhou Geological and Mineral Exploration and Development Bureau, 1-281. (in Chinese) [8] HAN R S, 2003. Preliminary discussion on research contents and methods of tectono-metallogenic dynamics and concealed ore orientation prognosis[J]. Geology and Prospecting, 39(1): 5-9. (in Chinese with English abstract) [9] HAN R S, 2005. Orefield/deposit tectono-geochemical method for the localization and prognosis of concealed orebodies[J]. Geological Bulletin of China, 24(10-11): 978-984. (in Chinese with English abstract) [10] HAN R S, CHEN J, HUANG Z L, et al. , 2006. Dynamics of tectonic ore-forming processes and localization-prognosis of concealed orebodies: as exemplified by the Huize super-large Zn-Pb-(Ag-Ge) district, Yunnan[M]. Beijing: Science Press. (in Chinese) [11] HAN R S, HU Y Z, WANG X K, et al. , 2012. Deposit model of germanium rich silver lead zinc polymetallic ore cluster in northeastern Yunnan[J]. Acta Geologica Sinica, 86(2): 280-294. (in Chinese with English abstract) [12] HU R Z, PENG J T, MA D S, et al. , 2007. Epoch of large-scale low-temperature mineralizations in southwestern Yangtze massif[J]. Mineral Deposits, 26(6): 583-596. (in Chinese with English abstract) [13] HU R Z, FU S L, HUANG Y, et al. , 2017. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model[J]. Journal of Asian Earth Sciences, 137: 9-34. doi: 10.1016/j.jseaes.2016.10.016 [14] JIA R X, FANG W X, 2021. The migration rule of the ore-forming fluids in the Meso-Cenozoic Basins, Southwestern Tianshan, China[J]. Journal of Geomechanics, 27(4): 529-541. (in Chinese with English abstract) [15] JIN X Y, LI J W, HOFSTRA A, et al. , 2016. Relationship between Carlin-type gold deposits and paleo-petroleum reservoirs in SW Guizhou, China: Evidence from gas compositions of fluid inclusions and Raman spectroscopic characteristics of bitumen[J]. Acta Petrologica Sinica, 32(11): 3295-3311. (in Chinese with English abstract) [16] LEI X L, WANG R, WEI C, 2012. A review of tectonic geochemical methods and their application in the prediction of hidden orebodies[J]. Mineral Deposits, 31(S1): 913-914. (in Chinese) [17] LI S T, LIU J Z, XIA Y, et al. , 2021. Tectono-geochemistry weak mineralization information extraction method and its application in the Carlin-type gold accumulation Area of South-western Guizhou[J]. Gold Science and Technology, 29(1): 53-63. (in Chinese with English abstract) [18] LI S T, LIU J Z, XIA Y, et al. , 2022. Geological and geochemical significance of hydrothermal minerals from Nibao—Baogudi Carlin-type gold orefield in Southwestern Guizhou[J]. Geological Review, 68(2): 551-570. (in Chinese with English abstract). [19] LI Y H, 2022. Characteristics and prospecting direction of the Zhexiang II gold deposit in Zhenfeng County, Guizhou Province [J]. Resource Information and Engineering, 37(05): 17-20+25 (in Chinese with English abstract). [20] LIU J Z, XIA Y, ZHANG X C, et al. , 2008. Model of strata Karlin-type gold deposit: the Shuiyingdong super-scale gold deposit[J]. Gold Science and Technology, 16(3): 1-5. (in Chinese with English abstract) [21] LIU J Z, XIA Y, TAO Y, et al. , 2014. The relation between SBT and gold-antimony deposit metallogenesis and prospecting in southwest Guizhou[J]. Guizhou Geology, 31(4): 267-272. (in Chinese with English abstract) [22] LIU J Z, LI J W, ZHOU Z G, et al. , 2017. New progress of exploration and research of Zhenfeng-Puan gold fully equipped exploration area[J]. Guizhou Geology, 34(4): 244-254. (in Chinese with English abstract) [23] LIU J Z, WANG Z P, YANG C F, et al. , 2020. Multi-level tectonic detachment mineralization system of Carlin type gold deposits in southern China[J]. China Science and Technology Achievements, 21(14): 49-51. (in Chinese) [24] LIU J Z, WANG Z P, SONG W F, et al. , 2021. Construction of a multi-level tectonic detachment mineralization system for Carlin type gold deposits in southern China[C]//Collected Papers of the First National Mineral Exploration Conference. Hefei: chinese geophysical society: 201-206. (in Chinese with English abstract) [25] LIU J Z, WANG Z P, YANG C F, et al. , 2022. Discriminant index and significance of structural body alteration of carlin-type gold deposits in Yunnan-Guizhou-Guangxi and its Surrounding Areas, China[J]. Gold Science and Technology, 30(4): 532-539. (in Chinese with English abstract) [26] LIU J Z, WANG Z P, SONG W F, et al. , 2023. Construction and prospecting practice of multilevel structural detachment metallogenic system of Carlin-type gold deposits in Yunnan—Guizhou—Guangxi area[J]. Geological Review, 69(2): 513-525. (in Chinese with English abstract) [27] LIU Q Q, 1981. Research and application of tectonic geochemistry[J]. Geology and Exploration(4): 53-61. (in Chinese) [28] LV G X, SUN Y, LIU D L, et al. , 2011. Tectono-geochemistry: a review[J]. Geotectonica et Metallogenia, 35(4): 479-494. (in Chinese with English abstract). [29] LV Z C, CHEN H, MI K F, et al. , 2022. The theory and method of ore prospecting prediction for exploration area: Case studies of the Lala copper deposit in Sichuan, Muhu–Maerkantu manganese ore deposit in Xinjiang and Aonaodaba tin-polymetallic deposit in Inner Mongolia[J]. Journal of Geomechanics, 28(5): 842-865. (in Chinese with English abstract). [30] LUO D W, YAO S Z, WANG C X, et al. , 2016. Evaluation of the degree of erosion of Carlin type gold deposits in southwestern Guizhou[J]. Earth Science, 41(02): 199-217. (in Chinese with English abstract). [31] MIN Z, CHEN Z L, PAN J Y, et al. , 2022. Research on fluid inclusions of the Jiadi gold deposit in southwestern Guizhou[J]. Journal of Geomechanics, 28(3): 448-463. (in Chinese with English abstract). [32] MUNTEAN J L, 2018. The Carlin gold system: applications to exploration in Nevada and beyond[M]//MUNTEAN J L. Diversity in Carlin-style gold deposits. Colorado: Society of Economic Geologists: 39-88. [33] MUNTEAN J L, CLINE J S, SIMON A C, et al. , 2011. Magmatic-hydrothermal origin of Nevada's Carlin-type gold deposits[J]. Nature Geoscience, 4(2): 122-127. doi: 10.1038/ngeo1064 [34] PENG J T, HU R Z, JIANG G H, 2003. Samarium-Neodymium isotope system of fluorites from the Qinglong antimony deposit, Guizhou Province: Constraints on the mineralizing age and ore-forming materials’ sources[J]. Acta Petrologica Sinica, 19(4): 785-791. (in Chinese with English abstract). [35] PENG S L, SHAO Y J, ZHANG J D, 2011. Prospecting prediction theory and method about concealed ore-deposit in metal mine[J]. Geological Bulletin of China, 30(4): 538-543. (in Chinese with English abstract) [36] QIAN J P, ZHANG H Y, DU J X, et al. , 2017. Application of tectono-geochemistry prospecting in the Yinan gold mine, Shandong[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(4): 593-601. (in Chinese with English abstract) [37] SONG W F, LIU J Z, WU P, et al. , 2022. A successful application of the tectono-geochemistry weak information extraction method in the prospecting of Carlin-type gold deposits in southwestern Guizhou Province[J]. Geophysical and Geochemical Exploration, 46(6): 1338-1348. (in Chinese with English abstract) [38] SUN J C, JIANG Z W, LEI Y S, 1987. Basic tecto-geochemical features of malage ore field of Gejiu mining area[J]. Geochemica(4): 303-311. (in Chinese with English abstract) [39] SUN Y, DAI C S, 1993. Study on the tectonogeochemistry[J]. Advance in Earth Science, 8(3): 1-6. (in Chinese with English abstract) [40] SUN Y, XU S J, LIU D L, 1998. An introduction of tectonogeochemistry in fault zones[M]. Beijing: Science Press. (in Chinese) [41] TAN L J, HUANG L P, 2016a. Discussion on deep prospecting methods for geological and mineral exploration[J]. Resource Information and Engineering, 31(4): 45-46. (in Chinese) [42] TAN L J, MENG M H, NIE R, 2016. Guizhou XingRen corn anticline geological characteristics and prospecting prospect is analyzed[J]. World Nonferrous Metals(14): 138-139, 141. (in Chinese with English abstract) [43] TAN L J, MENG M H, NIE R, 2017. Geological Survey Report on Mineral Resources in Xingren Baogu Anticline, Guizhou[R]. Guiyang: 105 Geological Brigade of Guizhou Geological and Mineral Exploration and Development Bureau, 1-296. (in Chinese) [44] TAN Q P, XIA Y, WANG X Q, et al. , 2017. Tectonic model and tectonic-geochemistry characteristics of the Huijiabao gold Orefield, SW Guizhou province[J]. Geotectonica et Metallogenia, 41(2): 291-304. (in Chinese with English abstract) [45] TAN Q P, XIA Y, XIE Z J, et al. , 2020. Tectono-geochemistry and concealed ores prospecting in the Shuiyindong Gold deposit of Southwestern Guizhou[J]. Acta Geoscientica Sinica, 41(6): 886-898. (in Chinese with English abstract) [46] TANG L, ZHANG S T, WANG L, et al. , 2021. Exploration of concealed fluorite deposit in shallow overburden areas: A case study in Elimutai, Inner Mongolia, China[J]. Earth Science Frontiers, 28(3): 208-220. (in Chinese with English abstract) [47] TAO Z P, 2016. Enrichment characteristics of trace elements and rare earth elements in late Permian coal from Puan and Qinglong Coalfield, Guizhou province[D]. Guizhou: Guizhou University. (in Chinese with English abstract) [48] TU G C, 1984. Tectonics and geochemistry[J]. Geotectonica et Metallogenia, 8(1): 1-5. (in Chinese with English abstract) [49] WELLS J D, STOISER L R, ELLIOTT J E, 1969. Geology and geochemistry of the Cortez gold deposit, Nevada[J]. Economic Geology, 64(5): 526-537. doi: 10.2113/gsecongeo.64.5.526 [50] WU X Y, 1998. Introduction to tectonic geochemistry[M]. Guiyang: Guizhou Science and Technology Publishing House Co. , Ltd. (in Chinese) YAO S Z, DING Z J, ZHOU Z G, et al. , 2020. Ore-accumulating structural system and mineral exploration[J]. Earth Science, 45(12): 4389-4398. (in Chinese with English abstract) [51] YANG C F, ZHAO F Y, YANG Q H, et al. , 2020. Verification Report on Resource Reserve of 2 Jinke Gold Mines (Combined with 1 Jinke Gold Mine) in Zhenfeng County, Guizhou Province[R]. Guiyang: 105 Geological Brigade of Guizhou Geological and Mineral Exploration and Development Bureau, 1-238. (in Chinese) [52] ZENG G P, 2018. Study on the structurally controlling on the micro-disseminated gold deposits in the Western of the Southwest Guizhou gold ore concentration area[D]. Beijing: China University of Geosciences. (in Chinese with English abstract) [53] ZHENG L L, 2017. Mineralization mechanism and ore-forming process of the Nibao gold deposit in Southwestern Guizhou, China[D]. Guizhou: Guizhou University. (in Chinese with English abstract) [54] 方维萱, 郭玉乾, 贾润幸, 等, 2021. 论云南个旧锡铜钨三稀金属矿集区叠加成矿系统与垂向构造岩相学结构的关系[J]. 地质力学学报, 27(4): 557-584. doi: 10.12090/j.issn.1006-6616.2021.27.04.048 [55] 冯济舟, 杨明应, 何邵鳞等, 2008. 贵州省地球化学图集[M]. 北京: 地质出版社: 1-61. [56] 龚红胜, 韩润生, 李孜腾, 等, 2020. 滇东北会泽铅锌矿区外围小竹箐勘查区构造岩元素组合异常及隐伏矿预测[J]. 地质力学学报, 26(3): 419-431. doi: 10.12090/j.issn.1006-6616.2020.26.03.036 [57] 郭涛, 吕古贤, 邓军, 等, 2003. 构造应力对元素分配的控制作用: 以焦家金矿床为例[J]. 地质力学学报, 9(2): 183-190. doi: 10.3969/j.issn.1006-6616.2003.02.012 [58] 韩润生, 2003. 初论构造成矿动力学及其隐伏矿定位预测研究内容和方法[J]. 地质与勘探, 39(1): 5-9. doi: 10.3969/j.issn.0495-5331.2003.01.002 [59] 韩润生, 2005. 隐伏矿定位预测的矿田(床)构造地球化学方法[J]. 地质通报, 24(10-11): 978-984. [60] 韩润生, 陈进, 黄智龙, 等, 2006. 构造成矿动力学及隐伏矿定位预测: 以云南会泽超大型铅锌(银、锗)矿床为例[M]. 北京: 科学出版社. [61] 韩润生, 胡煜昭, 王学琨, 等, 2012. 滇东北富锗银铅锌多金属矿集区矿床模型[J]. 地质学报, 86(2): 280-294. doi: 10.3969/j.issn.0001-5717.2012.02.007 [62] 何金坪, 刘光富, 李应辉, 等, 2021 贵州省贞丰县者相二金矿勘探报告[R]. 贵阳: . 贵州省地质矿产勘查开发局105地质大队, 1-281. [63] 胡瑞忠, 彭建堂, 马东升, 等, 2007. 扬子地块西南缘大面积低温成矿时代[J]. 矿床地质, 26(6): 583-596. doi: 10.3969/j.issn.0258-7106.2007.06.001 [64] 贾润幸, 方维萱, 2021. 西南天山中新生代盆地成矿流体运移规律[J]. 地质力学学报, 27(4): 529-541. doi: 10.12090/j.issn.1006-6616.2021.27.04.046 [65] 靳晓野, 李建威, HOFSTRA A, 等, 2016. 黔西南卡林型金矿床与区域古油藏的关系: 来自流体包裹体气相组成和沥青拉曼光谱特征的证据[J]. 岩石学报, 32(11): 3295-3311. [66] 雷小林, 王瑞, 魏成, 2012. 构造地球化学方法评述及其在隐伏矿体预测中的应用[J]. 矿床地质, 31(S1): 913-914. [67] 李松涛, 刘建中, 夏勇, 等, 2021. 黔西南卡林型金矿聚集区构造地球化学弱矿化信息提取方法及其应用研究[J]. 黄金科学技术, 29(1): 53-63. [68] 李松涛, 刘建中, 夏勇, 等, 2022. 黔西南泥堡—包谷地卡林型金矿田热液矿物地球化学特征及其地质意义[J]. 地质论评, 68(2): 551-570. [69] 李应辉, 2022. 贵州贞丰县者相二金矿矿体特征及找矿方向[J]. 资源信息与工程, 37(5) : 17-20+25. [70] 刘建中, 夏勇, 张兴春, 等, 2008. 层控卡林型金矿床矿床模型: 贵州水银洞超大型金矿[J]. 黄金科学技术, 16(3): 1-5. doi: 10.3969/j.issn.1005-2518.2008.03.001 [71] 刘建中, 夏勇, 陶琰, 等, 2014. 贵州西南部SBT与金锑矿成矿找矿[J]. 贵州地质, 31(4): 267-272. doi: 10.3969/j.issn.1000-5943.2014.04.005 [72] 刘建中, 李建威, 周宗桂, 等, 2017. 贵州贞丰—普安金矿整装勘查区找矿与研究新进展[J]. 贵州地质, 34(4): 244-254. doi: 10.3969/j.issn.1000-5943.2017.04.005 [73] 刘建中, 王泽鹏, 杨成富, 等, 2020. 中国南方卡林型金矿多层次构造滑脱成矿系统[J]. 中国科技成果, 21(14): 49-51. doi: 10.3772/j.issn.1009-5659.2020.14.022 [74] 刘建中, 王泽鹏, 宋威方, 等, 2021. 中国南方卡林型金矿多层次构造滑脱成矿系统的构建[C]. //首届全国矿产勘查大会论文集. 合肥: 中国地球物理学会: 201-206. [75] 刘建中, 王泽鹏, 杨成富, 等, 2022. 中国滇黔桂及周邻区卡林型金矿构造蚀变体判别指标及其意义[J]. 黄金科学技术, 30(4): 532-539. [76] 刘建中, 王泽鹏, 宋威方, 等, 2023. 滇黔桂地区卡林型金矿多层次构造滑脱成矿系统构建和找矿实践[J]. 地质论评, 69(2): 513-525. [77] 刘泉清, 1981. 构造地球化学的研究及其应用[J]. 地质与勘探(4): 53-61. [78] 吕古贤, 孙岩, 刘德良, 等, 2011. 构造地球化学的回顾与展望[J]. 大地构造与成矿学, 35(4): 479-494. doi: 10.3969/j.issn.1001-1552.2011.04.002 [79] 吕志成, 陈辉, 宓奎峰, 等, 2022. 勘查区找矿预测理论与方法及其应用案例[J]. 地质力学学报, 28(5): 842-865. doi: 10.12090/j.issn.1006-6616.20222816 [80] 骆地伟, 姚书振, 王成相, 等, 2016. 黔西南卡林型金矿剥蚀程度评价[J]. 地球科学, 41(2): 199-217. [81] 闵壮, 陈正乐, 潘家永, 等, 2022. 黔西南架底金矿床流体包裹体研究[J]. 地质力学学报, 28(3): 448-463. doi: 10.12090/j.issn.1006-6616.2021170 [82] 彭建堂, 胡瑞忠, 蒋国豪, 2003. 萤石Sm-Nd同位素体系对晴隆锑矿床成矿时代和物源的制约[J]. 岩石学报, 19(4): 785-791. doi: 10.3321/j.issn:1000-0569.2003.04.021 [83] 彭省临, 邵拥军, 张建东, 2011. 金属矿山隐伏矿找矿预测理论与方法[J]. 地质通报, 30(4): 538-543. doi: 10.3969/j.issn.1671-2552.2011.04.010 [84] 钱建平, 张海莹, 杜继旭, 等, 2017. 构造地球化学找矿方法在山东沂南金矿的应用及效果[J]. 矿物岩石地球化学通报, 36(4): 593-601. doi: 10.3969/j.issn.1007-2802.2017.04.011 [85] 宋威方, 刘建中, 吴攀, 等, 2022. 构造地球化学弱信息提取方法在黔西南卡林型金矿找矿中的应用[J]. 物探与化探, 46(6): 1338-1348. [86] 孙家骢, 江祝伟, 雷跃时, 1987. 个旧矿区马拉格矿田构造-地球化学特征[J]. 地球化学(4): 303-311. [87] 孙岩, 戴春森, 1993. 论构造地球化学研究[J]. 地球科学进展, 8(3): 1-6. [88] 谭礼金, 黄利平, 2016. 关于地质矿产勘查深部找矿方法的探讨[J]. 资源信息与工程, 31(4): 45-46. [89] 谭礼金, 蒙明华, 聂荣, 2016. 贵州兴仁包谷地背斜地质特征及找矿前景分析[J]. 世界有色金属(14): 138-139, 141. [90] 谭礼金, 蒙明华, 聂荣, 2017. 贵州兴仁包谷地背斜矿产地质调查报告[R]. 贵阳: 贵州省地质矿产勘查开发局105地质大队, 1-296. [91] 谭亲平, 夏勇, 王学求, 等, 2017. 黔西南灰家堡金矿田成矿构造模式及构造地球化学研究[J]. 大地构造与成矿学, 41(2): 291-304. [92] 谭亲平, 夏勇, 谢卓君, 等, 2020. 黔西南水银洞卡林型金矿构造地球化学及对隐伏矿找矿的指示[J]. 地球学报, 41(6): 886-898. doi: 10.3975/cagsb.2020.070801 [93] 唐利, 张寿庭, 王亮, 等, 2021. 浅覆盖区隐伏萤石矿找矿预测: 以内蒙古赤峰俄力木台为例[J]. 地学前缘, 28(3): 208-220. [94] 陶振鹏, 2016. 贵州普安—晴隆一带晚二叠世煤层中微量、稀土元素富集特征研究[D]. 贵州: 贵州大学. [95] 涂光炽, 1984. 构造与地球化学[J]. 大地构造与成矿学, 8(1): 1-5. [96] 吴学益, 1998. 构造地球化学导论[M]. 贵阳: 贵州科技出版社. [97] 姚书振, 丁振举, 周宗桂, 等, 2020. 聚矿构造系统与找矿[J]. 地球科学, 45(12): 4389-4398. [98] 杨成富, 赵富远, 杨清毫, 等, 2023. 贵州省贞丰县簸箕田2金科(合并簸箕田1金矿)资源储量核实报告[R]. 贵阳: 贵州省地质矿产勘查开发局105地质大队, 1-238. [99] 曾国平, 2018. 黔西南矿集区西段微细浸染型金矿构造控矿作用研究[D]. 北京: 中国地质大学. [100] 郑禄林, 2017. 贵州西南部泥堡金矿床成矿作用与成矿过程[D]. 贵州: 贵州大学.