留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构造-流体耦合有限元模拟:以石英脉型钨矿为例

刘向冲

刘向冲, 2019. 构造-流体耦合有限元模拟:以石英脉型钨矿为例. 地质力学学报, 25 (S1): 163-169. DOI: 10.12090/j.issn.1006-6616.2019.25.S1.028
引用本文: 刘向冲, 2019. 构造-流体耦合有限元模拟:以石英脉型钨矿为例. 地质力学学报, 25 (S1): 163-169. DOI: 10.12090/j.issn.1006-6616.2019.25.S1.028
LIU Xiangchong, 2019. FINITE-ELEMENT SIMULATIONS OF STRUCTURE-FLUID COUPLING: A CASE STUDY IN VEIN-TYPE TUNGSTEN DEPOSITS. Journal of Geomechanics, 25 (S1): 163-169. DOI: 10.12090/j.issn.1006-6616.2019.25.S1.028
Citation: LIU Xiangchong, 2019. FINITE-ELEMENT SIMULATIONS OF STRUCTURE-FLUID COUPLING: A CASE STUDY IN VEIN-TYPE TUNGSTEN DEPOSITS. Journal of Geomechanics, 25 (S1): 163-169. DOI: 10.12090/j.issn.1006-6616.2019.25.S1.028

构造-流体耦合有限元模拟:以石英脉型钨矿为例

doi: 10.12090/j.issn.1006-6616.2019.25.S1.028
基金项目: 

国家自然科学基金 41602088

中国地质科学院基本科研业务费 JYYWF20180602

中国地质科学院基本科研业务费 DZLXJK201603

详细信息
    作者简介:

    刘向冲(1987-), 男, 副研究员, 从事成矿动力学数值模拟和数学地质等研究。E-mail:xcliu@cags.ac.cn

  • 中图分类号: P612;P541

FINITE-ELEMENT SIMULATIONS OF STRUCTURE-FLUID COUPLING: A CASE STUDY IN VEIN-TYPE TUNGSTEN DEPOSITS

  • 摘要: 热液矿床成矿作用动力学过程涉及多时空高度耦合的物理和化学过程。数值模拟是研究这一复杂动力学过程的重要而有效的工具之一,也可在找矿预测等方面发挥重要作用。以南岭地区石英脉钨矿床为例,利用计算机求解控制构造-流体的物理和化学方程,定量揭示成矿热液聚焦流动与"五层楼"成矿的对应关系,正演高压成矿流体致使围岩发生水力破裂及其成矿效应。模拟结果与石英脉型钨矿床的构造地球化学特征相符。

     

  • 图  1  石英脉型钨矿床成矿流体流动二维模型

    Figure  1.  A two-dimensional model of hydrothermal flow at vein-type tungsten deposits

    图  2  数值模拟实验1的流速场(m/s)

    Figure  2.  The distribution of fluid velocity in the experiment 1(m/s)

    图  3  截取4 km深处100 m×100 m的水力破裂二维模型

    Figure  3.  A 100 m×100 m two-dimensional model of hydraulic fracturing at a depth of 4 km

    图  4  施加流体附近节点在水力破裂后应力场和流体压力变化

    Figure  4.  The change of the stress and fluid pressure after hydraulic fracturing at a reference node closed to the fixed fluid pressure

    表  1  数值模拟实验1各个单元的水力学参数

    Table  1.   Hydraulic parameters of each unit in the experiment 1

    参数 岩体 S1 S2 S3, S4 S5, S6, S7
    渗透率/m2 1.0×10-18 1.0×10-16 2.0×10-16 7.0×10-14 3.0×10-15
    孔隙度 0.0015 0.015 0.02 0.14 0.05
    箭头代表流体流动的方向,底部数值是最高流速。
    下载: 导出CSV
  • [1] 於崇文.热液成矿作用动力学[M].武汉:中国地质大学出版社, 1993:224.

    YU Chongwen. Dynamics of the hydrothermal ore-forming processes[M]. Wuhan:China University of Geosciences Press, 1993:224. (in Chinese)
    [2] 於崇文, 岑况, 鲍征宇, 等.成矿作用动力学[M].北京:地质出版社, 1998:310.

    YU Chongwen, CEN Kuang, BAO Zhengyu, et al. Dynamics of ore-forming processes[M]. Beijing:Geology Publishing House, 1998:310. (in Chinese)
    [3] 池国祥, 薛春纪.成矿流体动力学的原理、研究方法及应用[J].地学前缘, 2011, 18(5):1-18. http://d.old.wanfangdata.com.cn/Periodical/dxqy201105002

    CHI Guoxiang, XUE Chunji. Principles, methods and applications of hydrodynamic studies of mineralization[J]. Earth Science Frontiers, 2011, 18(5):1-18. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201105002
    [4] 赵崇斌, HOBBS B E, ORD A.用计算地球科学研究方法探讨地质现象的动力学机制——以断层中等距成矿分布为例[J].中国科学D辑:地球科学, 2008, 38(5):646-652. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200805011

    ZHAO Chongbin, HOBBS B E, ORD A. Investigating dynamic mechanisms of geological phenomena using methodology of computational geosciences:An example of equal-distant mineralization in a fault[J]. Science in China Series D:Earth Sciences, 2008, 51(7):947-954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200805011
    [5] WEIS P, DRIESNER T, HEINRICH C A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes[J]. Science, 2012, 338(6114):1613-1616. doi: 10.1126/science.1225009
    [6] ELDURSI K, BRANQUET Y, GUILLOU-FROTTIER L, et al. Numerical investigation of transient hydrothermal processes around intrusions:Heat-transfer and fluid-circulation controlled mineralization patterns[J]. Earth and Planetary Science Letters, 2009, 288(1-2):70-83. doi: 10.1016/j.epsl.2009.09.009
    [7] 王偲瑞, 杨立强, 孔鹏飞.焦家断裂渗透性结构与金矿床群聚机理:构造应力转移模拟[J].岩石学报, 2016, 32(8):2494-2508. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201608018

    WANG Sirui, YANG Liqiang, KONG Pengfei. Permeability structure and gold deposits cluster mechanism along the Jiaojia fault, China:Structure stress transfer modeling[J]. Acta Petrologica Sinica, 2016, 32(8):2494-2508. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201608018
    [8] 刘亮明, 周瑞超, 赵崇斌.构造应力环境对浅成岩体成矿系统的制约:从安庆月山岩体冷却过程动力学计算模拟结果分析[J].岩石学报, 2010, 26(9):2869-2878. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201009026

    LIU Liangming, ZHOU Ruichao, ZHAO Chongbin. Constraints of tectonic stress regime on mineralization system related to the hypabyssal intrusion:Implication from the computational modeling experiments on the geodynamics during cooling process of the Yuenshan intrusion in Anqing district, China[J]. Acta Petrologica Sinica, 2010, 26(9):2869-2878. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201009026
    [9] LI X H, YUAN F, ZHANG M M, et al. 3D computational simulation-based mineral prospectivity modeling for exploration for concealed Fe-Cu skarn-type mineralization within the Yueshan orefield, Anqing district, Anhui Province, China[J]. Ore Geology Reviews, 2019, 105:1-17. doi: 10.1016/j.oregeorev.2018.12.003
    [10] CUI T, YANG J, SAMSON I M. Tectonic deformation and fluid flow:implications for the formation of unconformity-related uranium deposits[J]. Economic Geology, 2012, 107(1):147-163. http://cn.bing.com/academic/profile?id=ec0a3049b97ab6df3f123dc7cc3a111c&encoded=0&v=paper_preview&mkt=zh-cn
    [11] LI Z H, CHI G X, BETHUNE K M, et al. Structural controls on fluid flow during compressional reactivation of basement faults:insights from numerical Modeling for the formation of unconformity-related uranium deposits in the Athabasca Basin, Canada[J]. Economic Geology, 2017, 112(2):451-466. http://cn.bing.com/academic/profile?id=8f582c22cc0a7c58450096d784163222&encoded=0&v=paper_preview&mkt=zh-cn
    [12] LIU X C, MA Y, XING H L, et al. Chemical responses to hydraulic fracturing and wolframite precipitation in the vein-type tungsten deposits of southern China[J]. Ore Geology Reviews, 2018, 102:44-58. doi: 10.1016/j.oregeorev.2018.08.027
    [13] LIU X C, XING H L, ZHANG D H. The mechanisms and time scale of alteration halos in vein-type tungsten deposits in southern China[J]. Ore Geology Reviews, 2017, 89:1019-1029. doi: 10.1016/j.oregeorev.2017.07.024
    [14] XING Huilin. Finite element modelling of biogas process from coal[J]. Chinese Journal of Computational Mechanics, 2016, 33(4):637-642. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jslxxb201604033
    [15] 古菊云.华南钨矿脉的形态分类[C]//余鸿彰.钨矿地质讨论会论文集.北京: 地质出版社, 1984: 35-45.

    GU Jiyun. Morphological zonation of tungsten deposits in South China[C]//YU Hongzhang. Proceedings of Symposium on Tungsten Geology. Beijing: Geological Publishing House, 1984: 35-45. (in Chinese)
    [16] 陈毓川, 裴荣富, 张宏良, 等.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M].北京:地质出版社, 1989:507.

    CHEN Yuchuan, PEI Rongfu, ZHANG Hongliang, et al. The geology of nonferrous and rare metal deposits related to mesozoic granitoids in Nanling Region, China[M]. Beijing:Geological Publishing Housing, 1989:507. (in Chinese)
    [17] 李吉明, 李永明, 楼法生, 等.赣北发现"五层楼"式石英脉型黑钨矿矿床——东坪黑钨矿矿床的发现及其地质意义[J].地球学报, 2016, 37(3):379-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201603015

    LI Jiming, LI Yongming, LOU Fasheng, et al. A "five-storey" style quartz vein wolframite deposit in northern Jiangxi province:the discovery of the Dongping wolframite deposit and its geological significance[J]. Acta Geoscientica Sinica, 2016, 37(3):379-384. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201603015
    [18] 王登红, 唐菊兴, 应立娟, 等. "五层楼+地下室"找矿模型的适用性及其对深部找矿的意义[J].吉林大学学报(地球科学版), 2010, 40(4):733-738. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201004001

    WANG Denghong, TANG Juxing, YING Lijuan, et al. Application of "Five levels + Basement" model for prospecting deposits into depth[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(4):733-738. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201004001
    [19] 赵正, 王登红, 陈毓川, 等. "九龙脑成矿模式"及其深部找矿示范:"五层楼+地下室"勘查模型的拓展[J].地学前缘, 2017, 24(5):8-16. http://d.old.wanfangdata.com.cn/Periodical/dxqy201705002

    ZHAO Zheng, WANG Denghong, CHEN Yuchuan, et al. "Jiulongnao metallogenic model" and the demonstration of deep prospecting:the extended application of "Five levels+Basement" exploration model[J]. Earth Science Frontiers, 2017, 24(5):8-16. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201705002
    [20] 许建祥, 曾载淋, 王登红, 等.赣南钨矿新类型及"五层楼+地下室"找矿模型[J].地质学报, 2008, 82(7):880-887. doi: 10.3321/j.issn:0001-5717.2008.07.003

    XU Jianxiang, ZENG Zailin, WANG Denghong, et al. A new type of tungsten deposit in southern Jiangxi and the new model of "Five floors+Basement" for prospecting[J]. Acta Geologica Sinica, 2008, 82(7):880-887. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2008.07.003
    [21] 祝新友, 王京彬, 王艳丽, 等.论石英脉型钨矿成矿系统的相对封闭性——以湖南瑶岗仙脉型钨矿床为例[J].地质学报, 2014, 88(5):825-835. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201405002

    ZHU Xinyou, WANG Jingbin, WANG Yanli, et al. Relative closed ore-forming system in the Tungsten-Bearing quartz vein:a case study of the Yaogangxian deposit, Hunan Province[J]. Acta Geologica Sinica, 2014, 88(5):825-835. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201405002
    [22] WU M Q, SAMSON I M, ZHANG D H. Textural and chemical constraints on the formation of disseminated granite-hosted W-Ta-Nb mineralization at the Dajishan Deposit, Nanling Range, Southeastern China[J]. Economic Geology, 2017, 112(4):855-887. http://cn.bing.com/academic/profile?id=e7b2a332efa11abd54f5bacbe5dc848d&encoded=0&v=paper_preview&mkt=zh-cn
    [23] 周利敏.江西省全南县大吉山钨矿构造应力场数值模拟与成矿预测[D].北京: 中国地质大学(北京), 2009: 67. http://cdmd.cnki.com.cn/Article/CDMD-11415-2009075726.htm

    ZHOU Limin. Numerical modeling of paleo tectonic stress field and metallogenic prognosis in Dajishan tungsten deposit, Quannan, Jiangxi[D]. Beijing: China University of Geosciences (Beijing), 2009: 67. (in Chinese with English abstract) http://cdmd.cnki.com.cn/Article/CDMD-11415-2009075726.htm
    [24] KOIDE H, BHATTACHARJI S. Formation of fractures around magmatic intrusions and their role in ore localization[J]. Economic Geology, 1975, 70(4):781-799. http://cn.bing.com/academic/profile?id=a3de9f9ac1b857e032baedf550558e12&encoded=0&v=paper_preview&mkt=zh-cn
    [25] NI P, WANG X D, WANG G G, et al. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China[J]. Ore Geology Reviews, 2015, 65:1062-1077. doi: 10.1016/j.oregeorev.2014.08.007
    [26] WEI W F, HU R Z, BI X W, et al. Infrared microthermometric and stable isotopic study of fluid inclusions in wolframite at the Xihuashan tungsten deposit, Jiangxi province, China[J]. Mineralium Deposita, 2012, 47(6):589-605. doi: 10.1007/s00126-011-0377-0
    [27] 曹晓峰, 吕新彪, 何谋春, 等.共生黑钨矿与石英中流体包裹体红外显微对比研究——以瑶岗仙石英脉型钨矿床为例[J].矿床地质, 2009, 28(5):611-620. doi: 10.3969/j.issn.0258-7106.2009.05.007

    CAO Xiaofeng, LV Xinbiao, HE Mouchun, et al. An infrared microscope investigation of fluid inclusions in coexisting quartz and wolframite:A case study of Yaogangxian quartz-vein wolframite deposit[J]. Mineral Deposits, 2009, 28(5):611-620. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2009.05.007
    [28] 黄惠兰, 常海亮, 付建明, 等.西华山脉钨矿床的形成压力及有关花岗岩的侵位深度[J].矿床地质, 2006, 25(5):562-571. doi: 10.3969/j.issn.0258-7106.2006.05.003

    HUANG Huilan, CHANG Hailiang, FU Jianming, et al. Formation pressure of wolframite-vein deposits and emplacement depth of related granite in Xihuashan, Jiangxi Province[J]. Mineral Deposits, 2006, 25(5):562-571. (in Chinese with English Abstract) doi: 10.3969/j.issn.0258-7106.2006.05.003
    [29] 王巧云, 胡瑞忠, 彭建堂, 等.湖南瑶岗仙钨矿床流体包裹体特征及其意义[J].岩石学报, 2007, 23(9):2263-2273. doi: 10.3969/j.issn.1000-0569.2007.09.024

    WANG Qiaoyun, HU Ruizhong, PENG Jiantang, et al. Characteristics and significance of the fluid inclusions from Yaogangxian tungsten deposit in south of Hunan[J]. Acta Petrologica Sinica, 2007, 23(9):2263-2273. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0569.2007.09.024
    [30] 席斌斌, 张德会, 周利敏, 等.江西省全南县大吉山钨矿成矿流体演化特征[J].地质学报, 2008, 82(7):956-966. doi: 10.3321/j.issn:0001-5717.2008.07.014

    XI Binbin, ZHANG Dehui, ZHOU Limin, et al. Characteristics of ore-forming fluid evolution in Dajishan tungsten deposit, Quannan County, Jiangxi[J]. Acta Geologica Sinica, 2008, 82(7):956-966. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2008.07.014
    [31] 芮宗瑶, 李荫清, 王龙生, 等.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质, 2003, 22(1):13-23. doi: 10.3969/j.issn.0258-7106.2003.01.002

    RUI Zongyao, LI Yinqing, WANG Longsheng, et al. Approach to ore-forming conditions in light of ore fluid inclusions[J]. Mineral Deposits, 2003, 22(1):13-23. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-7106.2003.01.002
    [32] BAKER T, POLLARD P J, MUSTARD R, et al. A comparison of granite-related tin, tungsten, and gold-bismuth deposits:implications for exploration[J]. Society of Economic Geologists Newsletter, 2005, 61:5-17. http://cn.bing.com/academic/profile?id=811623ca06db78f716b6b0a4e076d964&encoded=0&v=paper_preview&mkt=zh-cn
    [33] 刘向冲.江西大吉山石英脉型黑钨矿床"五层楼"垂直形态分带动力学机制[D].北京: 中国地质大学(北京), 2014: 114. http://cdmd.cnki.com.cn/article/cdmd-11415-1015518056.htm

    LIU Xiangchong. The mechanisms of the five-floor vertical morphological zonation at the Dajishan vein-type tungsten deposit, Jiangxi[D]. Beijing: China University of Geosciences (Beijing), 2014: 114. (in Chinese with English abstract) http://cdmd.cnki.com.cn/article/cdmd-11415-1015518056.htm
    [34] LIU X C, XING H L, ZHANG D H. Fluid focusing and its link to vertical morphological zonation at the Dajishan vein-type tungsten deposit, South China[J]. Ore Geology Reviews, 2014, 62:245-258. doi: 10.1016/j.oregeorev.2014.04.005
    [35] 刘向冲, 张德会, 赵波, 等.漂塘钨矿床"五层楼"垂直形态分带定量分析[J].高校地质学报, 2017, 23(3):408-416. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201703004

    LIU Xiangchong, ZHANG Dehui, ZHAO Bo, et al. Quantitative Analysis of the "five-floor" vertical morphological zonation in the Piaotang tungsten deposits, south China[J]. Geological Journal of China Universities, 2017, 23(3):408-416. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201703004
    [36] 汪劲草, 韦龙明, 朱文凤, 等.南岭钨矿"五层楼模式"的结构与构式——以粤北始兴县梅子窝钨矿为例[J].地质学报, 2008, 82(7):894-899. doi: 10.3321/j.issn:0001-5717.2008.07.005

    WANG Jincao, WEI Longming, ZHU Wenfeng, et al. Texture and tectonic style of "five-storeyed type" for the tungsten deposits in the Nanling Mountains, Southern China——An example from the Meiziwo tungsten deposit[J]. Acta Geologica Sinica, 2008, 82(7):894-899. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2008.07.005
    [37] 韦安伟, 汪劲草, 莫志明, 等.介于岩浆岩型与剪切带型之间的脉状钨锡矿床——广西珊瑚钨锡矿床新认识[J].桂林理工大学学报, 2015, 35(1):8-14. doi: 10.3969/j.issn.1674-9057.2015.01.002

    WEI Anwei, WANG Jincao, MO Zhiming, et al. A kind of tungsten-tin vein deposit between magmatic rock type and shear zone type-New acknowledge on Shanhu tungsten-tin deposit in Guangxi[J]. Journal of Guilin University of Technology, 2015, 35(1):8-14. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-9057.2015.01.002
    [38] SANDERSON D J, ROBERTS S, GUMIEL P, et al. Quantitative analysis of tin-and tungsten-bearing sheeted vein systems[J]. Economic Geology, 2008, 103(5):1043-1056. doi: 10.2113/gsecongeo.103.5.1043
    [39] NAUMOV V B, GIRNIS A V, DOROFEEVA V A, et al. Concentration of ore elements in magmatic melts and natural fluids as deduced from data on inclusions in minerals[J]. Geology of Ore Deposits, 2016, 58(4):327-343. doi: 10.1134/S1075701516040048
    [40] WOOD S A, SAMSON I M. The hydrothermal geochemistry of Tungsten in Granitoid environments:Ⅰ. relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl[J]. Economic Geology, 2000, 95(1):143-182.
    [41] CHEN L L, NI P, LI W S, et al. The link between fluid evolution and vertical zonation at the Maoping tungsten deposit, Southern Jiangxi, China:Fluid inclusion and stable isotope evidence[J]. Journal of Geochemical Exploration, 2018, 192:18-32. https://www.sciencedirect.com/science/article/pii/S0375674217304648
    [42] LI W S, NI P, PAN J Y, et al. Fluid inclusion characteristics as an indicator for tungsten mineralization in the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China[J]. Journal of Geochemical Exploration, 2018, 192:1-17. https://www.sciencedirect.com/science/article/pii/S0375674217304624
    [43] 周龙全, 李光来, 苏晔, 等.赣南茅坪钨矿床黄玉单晶流体包裹体研究[J].矿床地质, 2017, 36(4):921-934. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704009.htm

    ZHOU Longquan, LI Guanglai, SU Ye, et al. A preliminary study of fluid inclusions of topaz crystal from Maoping tungsten deposit, southern Jiangxi Province[J]. Mineral Deposits, 2017, 36(4):921-934. (In Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201704009.htm
    [44] 刘向冲, 张德会.黑钨矿有效沉淀机制:CO2逃逸[J].地质力学学报, 2019, 25(1):19-26. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190103&journal_id=dzlxxb

    LIU Xiangchong, ZHANG Dehui. The efficient mechanisms for precipitating wolframite:CO2 escaping[J]. Journal of Geomechanics, 2019, 25(1):19-26. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190103&journal_id=dzlxxb
    [45] 陈柏林.从成矿构造动力学探讨脉状金矿床成矿深度[J].地质科学, 2001, 36(3):380-384. http://www.cnki.com.cn/Article/CJFDTotal-DZKX200103014.htm

    CHEN Bolin. Calculation of metallogenic depth of lode gold deposits from mineralization structure-dynamics[J]. Chinese Journal of Geology, 2001, 36(3):380-384. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DZKX200103014.htm
    [46] SIBSON R H. Conditions for fault-valve behaviour[J]. Geological Society, London, Special Publications, 1990, 54(1):15-28. https://www.researchgate.net/publication/249548873_Conditions_for_fault-valve_behavior
    [47] COX S F. The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones[J]. Geofluids, 2010, 10(1-2):217-233.
    [48] 徐兴旺, 牛磊, 洪涛, 等.流体构造动力学与成矿作用[J].地质力学学报, 2019, 25(1):1-8. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190101&journal_id=dzlxxb

    XU Xingwang, NIU Lei, HONG Tao, et al. Tectonic dynamics of fluids and metallogenesis[J]. Journal of Geomechanics, 2019, 25(1):1-8. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190101&journal_id=dzlxxb
    [49] 於崇文.多重水力断裂的分形扩张[J].地学前缘, 2004, 11(1):11-44. http://www.cnki.com.cn/Article/CJFDTotal-DXQY200401001.htm

    YU Chongwen. Fractal dilatation of multiple hydraulic fracturing[J]. Earth Science Frontiers, 2004, 11(3):11-44. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DXQY200401001.htm
    [50] LIU X C, XING H L, ZHANG D H. Influences of hydraulic fracturing on fluid flow and mineralization at the vein-type tungsten deposits in southern China[J]. Geofluids, 2017, 2017:4673421. https://www.hindawi.com/journals/geofluids/2017/4673421/
    [51] LIU X C, XING H L, ZHANG D H. Hydraulic fracturing leads to wolframite deposition at magmatic-hydrothermal transition[J]. Acta Geologica Sinica, 2018, 92(2):862-863.
    [52] MAO S D, ZHANG D H, LI Y Q, et al. An improved model for calculating CO2 solubility in aqueous NaCl solutions and the application to CO2-H2O-NaCl fluid inclusions[J]. Chemical Geology, 2013, 347:43-58.
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  201
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回