留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

莺歌海盆地天然气运聚成藏条件与分布富集规律

吴迅达 廖晋 孙文钊 刘平 李春雷

吴迅达, 廖晋, 孙文钊, 等, 2021. 莺歌海盆地天然气运聚成藏条件与分布富集规律. 地质力学学报, 27 (6): 963-974. DOI: 10.12090/j.issn.1006-6616.2021.27.06.078
引用本文: 吴迅达, 廖晋, 孙文钊, 等, 2021. 莺歌海盆地天然气运聚成藏条件与分布富集规律. 地质力学学报, 27 (6): 963-974. DOI: 10.12090/j.issn.1006-6616.2021.27.06.078
WU Xunda, LIAO Jin, SUN Wenzhao, et al., 2021. Natural gas distribution and reservoir-forming law of the Yinggehai Basin, China. Journal of Geomechanics, 27 (6): 963-974. DOI: 10.12090/j.issn.1006-6616.2021.27.06.078
Citation: WU Xunda, LIAO Jin, SUN Wenzhao, et al., 2021. Natural gas distribution and reservoir-forming law of the Yinggehai Basin, China. Journal of Geomechanics, 27 (6): 963-974. DOI: 10.12090/j.issn.1006-6616.2021.27.06.078

莺歌海盆地天然气运聚成藏条件与分布富集规律

doi: 10.12090/j.issn.1006-6616.2021.27.06.078
详细信息
    作者简介:

    吴迅达(1984-), 男, 硕士, 工程师, 从事石油地质学研究工作。E-mail: wuxd1@cnooc.com.cn

  • 中图分类号: TE122;P618.13

Natural gas distribution and reservoir-forming law of the Yinggehai Basin, China

  • 摘要: 油气勘探实践表明莺歌海盆地的天然气形成、分布及保存均与底辟区超压体系密切相关。文章根据地震、测井及地质资料与钻探成果,系统地分析总结了莺歌海盆地天然气生成、运聚及富集成藏特征。研究表明,莺歌海盆地天然气分布往往具有浅层气田沿中央泥底辟带分布、中深层岩性气藏分布于底辟构造翼部的特征,且具有"流体超压驱动、底辟裂缝输导、重力流扇体储集、高压泥岩封盖、天然气幕式脱溶成藏"的运聚成藏及富集规律。

     

  • 图  1  莺歌海盆地构造单元划分及油气田位置

    Figure  1.  Map showing tectonic units and locations of petroleum field in the Yinggehai Basin

    图  2  中新统—渐新统不同组段和始新统烃源岩成熟度(RO)等值线图

    a—梅山组; b—三亚组; c—陵水组; d—始新统

    Figure  2.  Contour maps showing the maturity (RO) of the source rocks of the Miocene and Oligocene in different formations and in the Eocene

    (a)Meishan Formation; (b)Sanya Formation; (c)Lingshui Formation; (d)Eocene

    图  3  莺歌海盆地中新统梅山组一段—上新统莺歌海组层序地层格架

    Figure  3.  Sequence stratigraphic framework of the first member of the Miocene Meishan Formation—Pliocene Yinggehai Formation in the Yinggehai Basin

    图  4  黄流组西物源海底扇沉积地震相(剖面位置见图 1)

    Figure  4.  Sedimentary seismic facies of the western provenance submarine fan of the Huangliu Formation(Location of the profile is shown in Fig. 1)

    图  5  莺歌海盆地中央泥底辟带东方区晚中新世—上新世海底扇沉积模式

    Figure  5.  Sedimentary patterns of late Miocene—Pliocene submarine fans in the eastern zone of the central mud diapir zone in the Yinggehai Basin

    图  6  中央泥底辟带乐东区浅层气田群储层沉积及分布模式

    Figure  6.  Reservoir deposition and distribution model of shallow gas field group in the Ledong area of the central mud diapir zone

    图  7  莺歌海盆地中央泥底辟带微断裂系统与浅层天然气流井分布关系

    红色模糊区代表微裂隙发育区

    Figure  7.  Relationship between the microfracture system in the central mud diapir zone and the distribution of shallow natural gas flow wells in the Yinggehai Basin

    Note: The red fuzzy area represents the microfissure area

    图  8  过东方1-1构造相干体三维及平面显示图

    Figure  8.  Three-dimensional and planar display of the coherence volume passing through the Dongfang 1-1 structure

    (a) Three-dimensional display of the coherence volume; (b) Variance slice at 3000 ms

    表  1  东方区高温超压气藏盖层与天然气微观封闭能力特征对比表

    Table  1.   Parameter comparison table for cap rock of gas reservoir with high temperature and over pressure vesus micro-sealing capacity

    井号 气组 盖层突破压力/MPa 储层排替压力/MPa 平均压力比值 测井解释
    DF-A 2.338~11.84 0.02~0.059 161.25 气层
    DF-B 2.645~7.425 0.001~0.199 150.17 气层
    DF-C 15.61~29.67 0.002~0.67 94.09 气层、气水同层、含气水层、水层
    DF-D 15.61~29.67 0.002~0.67 596.25 气层
    DF-E Ⅱb 20.76~83.04 0.003~0.94 662.11 气层
    DF-F 5.367~98.69 0.007~0.866 1283.86 气层
    DF-G Ⅱb 4.38~98.70 0.02~0.71 1093.71 气层
    DF-H T30-A1 0.742~8.203 0.023~0.73 4.80 差气层
    DF-I T30-A5 1.09~9.09 0.005~1.091 43.73 含气水层
    下载: 导出CSV

    表  2  东方区高温超压气藏盖层与天然气宏观封闭能力特征对比表

    Table  2.   Parameter comparison table for cap rock of gas reservoir with high temperature and over pressure vesus macro-sealing capacity

    井号 地层压力系数 地层构造倾角 气藏剩余压力/MPa 盖层封闭压力/MPa 破裂压力/MPa 储层流体压力/MPa
    DF-A 1.96 3.4° 31.51 27.93 69.66 64.33
    DF-B 1.90 1.9° 25.47 27.47 61.36 53.78
    DF-C 1.93 1.9° 26.73 27.75 62.84 55.47
    DF-D 1.97 1.9° 28.03 29.22 62.07 56.93
    DF-E 1.76 1.1° 22.34 32.34 61.74 53.00
    DF-F 1.82 1.1° 23.30 34.75 62.52 52.70
    下载: 导出CSV
  • CHEN X J, 2019. Overpressure Identification and Pressure Prediction in Yinggehai Basin[J]. International Journal of Geosciences, 10(4): 454-462. doi: 10.4236/ijg.2019.104026
    FENG X Q, SONG H M, 2020. Simulation of oil-gas accumulation of clastic rocks and potential areas in the Tahe Oilfield[J]. Journal of Geomechanics, 26(6): 892-900. (in Chinese with English abstract)
    GUO X X, XU X D, XIONG X F, et al., 2017. Gas accumulation characteristics and favorable exploration directions in mid-deep strata of the Yinggehai Basin[J]. Natural Gas Geoscience, 28(12): 1864-1872. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201712010.htm
    HAN G M, ZHOU J X, PEI J X, et al., 2012. Essence of diapir and its relationship with natural gas accumulation in Yinggehai Basin[J]. Lithologic Reservoirs, 24(5): 27-31. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YANX201205008.htm
    HAO F, LI S T, SUN Y C, et al., 1996. Characteristics and origin of the gas and condensate in the Yinggehai Basin, offshore South China Sea: evidence for effects of overpressure on petroleum generation and migration[J]. Organic Geochemistry, 24(3): 363-375. doi: 10.1016/0146-6380(96)00009-5
    HAO F, ZOU H Y, FANG Y, et al., 2006. Kinetics of organic matter maturation and hydrocarbon generation in overpressure environment[J]. Acta Petrolei Sinica, 27(5): 9-18. (in Chinese with English abstract)
    HE J X, LIU H L, YAO Y J, et al., 2008. Petroleum Geology and resource potential of continental marginal basins in northern South China[M]. Beijing: Petroleum Industry Press. (in Chinese)
    HE L J, XIONG L P, WANG J Y, 2002. Heat flow and thermal modeling of the Yinggehai Basin, South China Sea[J]. Tectonophysics, 351(3): 245-253. doi: 10.1016/S0040-1951(02)00160-9
    HU J J, TANG Y J, HE D X, et al., 2020. Comparison and exploration of hydrocarbon expulsion patterns of different types of source rocks[J]. Journal of Geomechanics, 26(6): 941-951. (in Chinese with English abstract)
    HUANG B J, XIAO X M, LI X X, 2003. Geochemistry and origins of natural gases in the Yinggehai and Qiongdongnan basins, offshore South China Sea[J]. Organic Geochemistry, 34(7): 1009-1025. doi: 10.1016/S0146-6380(03)00036-6
    HUANG B J, XIAO X M, HU Z L, et al., 2005. Geochemistry and episodic accumulation of natural gases from the Ledong gas field in the Yinggehai Basin, offshore South China Sea[J]. Organic Geochemistry, 36(12): 1689-1702. doi: 10.1016/j.orggeochem.2005.08.011
    HUANG B J, LI X S, XIE R Y, 2007. Carrier system and dominant migration direction of natural gas in the Yinggehai Basin[J]. Natural Gas Industry, 27(4): 4-6. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200704001.htm
    HUANG B J, HUANG H T, LI L, et al., 2010. Characteristics of marine source rocks and effect of high temperature and overpressure to organic matter maturation in Yinggehai-Qiongdongnan Basins[J]. Marine Origin Petroleum Geology, 15(3): 11-18. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXYQ201003005.htm
    LI X T, HE J X, ZHANG W, 2016a. The synthetic evaluation of Paleogene and Neogene source rocks and the favorable exploration target in Yinggehai Basin[J]. Marine Geology & Quaternary Geology, 36(2): 129-142. (in Chinese with English abstract) http://search.cnki.net/down/default.aspx?filename=HYDZ201602021&dbcode=CJFD&year=2016&dflag=pdfdown
    LI X T, YU S Y, HE J X, et al., 2016b. Paleogene hydrocarbon sources and their petroleum geological significance in Yinggehai Basin, Northwestern South China Sea[J]. Marine Geology Frontiers, 32(12): 16-25. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT201612003.htm
    LIU Z J, LU Z Q, ZHANG W, et al., 2015. Assessment of accumulation conditions for medium-deep oil in Ledong area of the central diaper belt, Yinggehai Basin[J]. Marine Geology & Quaternary Geology, 35(4): 49-61. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201504009.htm
    SUN Z, ZHONG Z H, ZHOU D, 2007. The analysis and analogue modeling of the tectonic evolution and strong subsidence in the Yinggehai basin[J]. Earth Science-Journal of China University of Geosciences, 32(3): 347-356 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200703006.htm
    WANG Z F, PEI J X, 2011. A new accumulation model of high pressure gas in Huangliu Formation of the middle-deep interval in Yinggehai basin: the significance of discovering a good-quality gas pay with overpressure and high production in Well DF14[J]. China Offshore Oil and Gas, 23(4): 213-217. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201104000.htm
    XIE Y H, ZHANG Y Z, LI X S, et al., 2012. Main controlling factors and formation models of natural gas reservoirs with high-temperature and overpressure in Yinggehai Basin[J]. Acta Petrolei Sinica, 33(4): 601-609. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201204007.htm
    XIONG X F, XU X D, GUO X X, et al., 2016. Controlling effects of sedimentation on organic matter maturation in Yinggehai Basin[J]. Natural Gas Geoscience, 27(12): 2169-2175. (in Chinese with English abstract) http://www.researchgate.net/publication/316512690_Controlling_effects_of_sedimentation_on_organic_matter_maturation_in_Yinggehai_Basin
    XU X D, ZHANG Y Z, PEI J X, et al., 2015. Control effect of tectonic evolution on gas accumulation difference in the Yinggehai Basin[J]. Natural Gas Industry, 35(2): 12-20. (in Chinese with English abstract) http://www.researchgate.net/publication/282280318_Control_effect_of_tectonic_evolution_on_gas_accumulation_differencein_the_Yinggehai_Basin
    XU X D, YANG J H, LIU H Y, et al., 2019. Formation mechanism of organic matter in source rocks under marine environment in Yinggehai Basin[J]. Earth Science, 44(8): 2643-2653. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908010.htm
    YANG D H, TONG H M, FAN C W, et al., 2019. Determination of the tectonic transformation surface in Yinggehai Basin and its geological significance[J]. Geotectonica et Metallogenia, 43(3): 590-601. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201903015.htm
    YIN X L, LI S T, 2000. Overpressure system in Yinggehai Basin and its relationship with oil/gas pools[J]. Journal of Geomechanics, 6(3): 69-77. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX200003007.htm
    ZHANG G C, CHEN G J, ZHANG H H, et al., 2012. Regular distribution of inside-oil fields and outside-gas fields controlled by source rocks and heat in China Offshore Basins[J]. Acta Sedimentologica Sinica, 30(1): 1-19. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201201002.htm
    ZHANG H L, PEI J X, ZHANG Y Z, et al., 2013. Overpressure reservoirs in the mid-deep Huangliu Formation of the Dongfang area, Yinggehai Basin, South China Sea[J]. Petroleum Exploration and Development, 40(3): 284-293. (in Chinese with English abstract) http://www.researchgate.net/publication/281560509_Overpressure_reservoirs_in_the_mid-deep_Huangliu_Formation_of_the_Dongfang_area_Yinggehai_Basin_South_China_Sea
    ZHANG M Q, ZHONG Z H, XIA B, et al., 2004. Genetic mechanisms of mud-fluid diapir in Yinggehai Basin and hydrocarbon accumulation[J]. Geotectonica et Metallogenia, 28(2): 118-125. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200402001&dbcode=CJFD&year=2004&dflag=pdfdown
    ZHANG Y Z, WANG L F, LI X S, et al., 2016. Sandy mass transport deposit model and its natural gas accumulation in the Yinggehai Basin[J]. Petroleum Geology & Experiment, 38(2): 189-196. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201602008.htm
    ZHANG Z T, LIN C S, LI H Y, et al., 2019. Characteristics of the Cenozoic cap rock and its control on hydrocarbon in the western Bohai Sea area[J]. Journal of Geomechanics, 25(3): 357-369. (in Chinese with English abstract)
    冯兴强, 宋海明, 2020. 塔河油田碎屑岩油气运聚模拟及潜力区优选[J]. 地质力学学报, 26(6): 892-900. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200608&journal_id=dzlxxb
    郭潇潇, 徐新德, 熊小峰, 等, 2017. 莺歌海盆地中深层天然气成藏特征与有利勘探领域[J]. 天然气地球科学, 28(12): 1864-1872. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712010.htm
    韩光明, 周家雄, 裴健翔, 等, 2012. 莺歌海盆地底辟本质及其与天然气成藏关系[J]. 岩性油气藏, 24(5): 27-31. doi: 10.3969/j.issn.1673-8926.2012.05.005
    郝芳, 邹华耀, 方勇, 等, 2006. 超压环境有机质热演化和生烃作用机理[J]. 石油学报, 27(5): 9-18. doi: 10.3321/j.issn:0253-2697.2006.05.002
    何家雄, 刘海玲, 姚永坚, 等, 2008. 南海北部边缘盆地油气地质及资源前景[M]. 北京: 石油工业出版社.
    胡锦杰, 唐友军, 何大祥, 等, 2020. 不同类型烃源岩排烃模式对比及差异性探究[J]. 地质力学学报, 26(6): 941-951. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200613&journal_id=dzlxxb
    黄保家, 李绪深, 谢瑞永, 2007. 莺歌海盆地输导系统及天然气主运移方向[J]. 天然气工业, 27(4): 4-6. doi: 10.3321/j.issn:1000-0976.2007.04.002
    黄保家, 黄合庭, 李里, 等, 2010. 莺-琼盆地海相烃源岩特征及高温高压环境有机质热演化[J]. 海相油气地质, 15(3): 11-18. doi: 10.3969/j.issn.1672-9854.2010.03.002
    李晓唐, 何家雄, 张伟, 2016a. 莺歌海盆地古新近系烃源条件与有利油气勘探方向[J]. 海洋地质与第四纪地质, 36(2): 129-142. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201602021.htm
    李晓唐, 于书友, 何家雄, 等, 2016b. 南海西北部莺歌海盆地古近系烃源条件及石油地质意义[J]. 海洋地质前沿, 32(12): 16-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201612003.htm
    刘志杰, 卢振权, 张伟, 等, 2015. 莺歌海盆地中央泥底辟带东方区与乐东区中深层成藏地质条件[J]. 海洋地质与第四纪地质, 35(4): 49-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201504009.htm
    孙珍, 钟志洪, 周蒂, 2007. 莺歌海盆地构造演化与强烈沉降机制的分析和模拟[J]. 地球科学-中国地质大学学报, 32(3): 347-356. doi: 10.3321/j.issn:1000-2383.2007.03.007
    王振峰, 裴健翔, 2011. 莺歌海盆地中深层黄流组高压气藏形成新模式: DF14井钻获强超压优质高产天然气层的意义[J]. 中国海上油气, 23(4): 213-217. doi: 10.3969/j.issn.1673-1506.2011.04.001
    谢玉洪, 张迎朝, 李绪深, 等, 2012. 莺歌海盆地高温超压气藏控藏要素与成藏模式[J]. 石油学报, 33(4): 601-609. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201204010.htm
    熊小峰, 徐新德, 郭潇潇, 等, 2016. 沉积过程对莺歌海盆地烃源岩生气的控制作用[J]. 天然气地球科学, 27(12): 2169-2175. doi: 10.11764/j.issn.1672-1926.2016.12.2169
    徐新德, 张迎朝, 裴健翔, 等, 2015. 构造演化对莺歌海盆地天然气成藏差异性的控制作用[J]. 天然气工业, 35(2): 12-20. doi: 10.3787/j.issn.1000-0976.2015.02.002
    徐新德, 杨计海, 刘海钰, 等, 2019. 莺歌海盆地浅海环境下烃源岩有机质形成机制[J]. 地球科学, 44(8): 2643-2653. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201908010.htm
    杨东辉, 童亨茂, 范彩伟, 等, 2019. 莺歌海盆地构造转折界面的确定及其地质意义[J]. 大地构造与成矿学, 43(3): 590-601. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201903015.htm
    殷秀兰, 李思田, 2000. 莺歌海盆地超压体系的成因及与油气的关系[J]. 地质力学学报, 6(3): 69-77. doi: 10.3969/j.issn.1006-6616.2000.03.008
    张功成, 陈国俊, 张厚和, 等, 2012. "源热共控"中国近海盆地油气田"内油外气"有序分布[J]. 沉积学报, 30(1): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201201002.htm
    张伙兰, 裴健翔, 张迎朝, 等, 2013. 莺歌海盆地东方区中深层黄流组超压储集层特征[J]. 石油勘探与开发, 40(3): 284-293. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201303006.htm
    张敏强, 钟志洪, 夏斌, 等, 2004. 莺歌海盆地泥-流体底辟构造成因机制与天然气运聚[J]. 大地构造与成矿学, 28(2): 118-125. doi: 10.3969/j.issn.1001-1552.2004.02.002
    张迎朝, 王立锋, 李绪深, 等, 2016. 莺歌海盆地砂质块体搬运沉积及其天然气聚集[J]. 石油实验地质, 38(2): 189-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201602008.htm
    张正涛, 林畅松, 李慧勇, 等, 2019. 渤海西部海域新生代盖层特征及对油气的控制作用[J]. 地质力学学报, 25(3): 357-369. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190306&journal_id=dzlxxb
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  16
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-22
  • 修回日期:  2021-11-16
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回