地应力与油气运移

王连捷 张利容 袁嘉音 王 薇

(中国地质科学院地质力学研究所)

摘 要 本文途述了地应力作用下引起的岩石变形及孔隙压力,给出了孔隙岩层中流体的微分方程及有限元公式。在地应力测量及应力场模拟的基础上对辽河油田进行了 运移势场的计算,为油气勘探开发提供依据。

关键词 地应力测量 油气运移

0 引言

地壳在地应力作用下,发生构造运动和岩石变形,岩石的变形产生体积变化,使岩层内流 体孔隙压力增加或减小,产生压力梯度或势差,推动流体在岩内流动。在流动过程中,遇到合适 的构造部位,油气就会聚集成藏,形成油田。岩石的变形也导致孔隙度和渗透率的改变,从而影 响渗流的速度和方向。

地应力是控制油气运移和集聚的重要因素之一,地应力对油气运移的驱动作用是一个复杂的问题,目前仍处于探索阶段。

1 地应力引起的岩体变形

设岩层为线弹性体,受到应力作用后的应变分量如下[1]:

$$\varepsilon_{x} = \frac{1}{E} [\sigma_{x} - \mu(\sigma_{y} + \sigma_{z})]$$

$$\varepsilon_{y} = \frac{1}{E} [\sigma_{y} - \mu(\sigma_{z} + \sigma_{z})]$$

$$\varepsilon_{z} = \frac{1}{E} [\sigma_{z} - \mu(\sigma_{z} + \sigma_{y})]$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G}$$

$$\gamma_{yx} = \frac{\tau_{yx}}{G}$$

$$\gamma_{zx} = \frac{\tau_{yx}}{G}$$
(1)

其中 ε_z、ε_y、ε_z、γ_{zy}、γ_{zz}为正应变和剪应变。σ_z、σ_y、σ_z、τ_{zy}、τ_{zz}为正应力和剪应力。E 为 岩石的弹性模量,μ为泊松比;G 为剪切模量。

体积应变为:

3

$$\frac{\Delta V}{V} = \epsilon_x + \epsilon_y + \epsilon_z = \frac{1}{E} \left[\sigma_x + \sigma_y + \sigma_z - 2\mu(\sigma_x + \sigma_y + \sigma_z) \right]$$

$$\sigma_0 = \frac{1}{2} \left(\sigma_x + \sigma_y + \sigma_z \right)$$
(2)

则:
$$\frac{\Delta V}{V} = \frac{3\sigma_0}{E}(1-2\mu)$$

$$\Rightarrow$$
: $K = \frac{E}{2\sqrt{1-2}}$

令:

デ:
$$K = \frac{1}{3(1-2\mu)}$$

于是: $\frac{\Delta V}{V} = \frac{\sigma_0}{K}$

K 称为体积变形模量;V 为岩层的体积;ΔV 为体积的变化量;σ。为平均应力或球应力。 由上式可见,岩层的体应变与平均应力(或球应力)σ。成正比,与体变模量成反比。

2 有效应力与孔隙压力

岩层受到应力作用后,一部分由岩层孔隙中的流体承受,称为孔隙压力。一部分由岩层骨 架承受,称为有效应力。在饱和的岩层中,应力可表示为^[2]:

$$\sigma = \sigma' + u$$

(4)

(3)

式中 o' 称为岩层骨架的有效应力, u 称为孔隙压力, o 称为总应力。

孔隙压力的大小有时用孔隙压力系数表示比较方便。当试样在不排水的条件下受到三维 应力作用,平均应力为 σ₀,产生的孔隙压力为 u,此时平均有效应力 σ′₀ 为:

$$\sigma_{0}' = \frac{1}{3}(\sigma_{1}' + \sigma_{2}' + \sigma_{3}') = \frac{1}{3}[(\sigma_{1} - u) + (\sigma_{2} - u) + (\sigma_{3} - u)]$$

$$= \frac{1}{3}[(\sigma_{1} + \sigma_{2} + \sigma_{3}) - 3u]$$

$$= \sigma_{0} - u$$
(5)

即: $\sigma_0' = \sigma_0 - u$

根据弹性理论,得到岩层的体积变化为

$$\Delta V = \frac{V\sigma_0'}{K} = \frac{V(\sigma_0 - u)}{K} \tag{6}$$

孔隙中的流体在压力 u 作用下,发生体积变化 ΔV, 为:

$$\Delta V_v = \frac{nuV}{K_v}$$

式中: n为孔隙率;K,为孔隙中流体的体积压缩系数。

因为骨架的体积压缩很小,可忽略不计,岩层的体积变化近似等于孔隙的体积变化,于是 式(6)与(7)应相等

$$\frac{V(\sigma_0 - u)}{K} = \frac{nuV}{K_c}$$
(8)

$$\frac{u}{\sigma_0} = \frac{1}{1 + \frac{nK}{K_v}} = B \tag{9}$$

B 称为孔隙压力系数

对饱和岩层因为水的压缩性比岩层骨架的压缩性低得多,即 K,比 K 大得多,K/K,≈0, 所以 B≈1。对于干岩层,孔隙的压缩性很大,所以 B≈0。非饱和的湿岩层,B 在 0~1 之间,饱 和度越大,B 越接近于 1。对于饱和岩层

$$\frac{u}{\sigma_0}=1$$

即: $u=\sigma_0$

上式说明,总应力全部由孔隙中的流体所承受。总应力全部转为孔隙压力。

3 流体势[3]

这里取流体势的定义为:

 $\Phi = \rho g H + P$

(11)

(10)

式中: ρ 为流体的密度; g为重力加速度; H为高度; p为孔隙压力; ρ gH为重力产生的势能。

如果流体只沿水平方向流动,则式(11)中的右端第一项可不考虑(即不考虑重力的影响)。 由地应力场计算出孔隙流体压力,再利用式(11)计算出流体的势,划出流体势等值线。根据流 体由高势区向低势区运移的规律,找出流体运移的方向。

4 岩层内流体运动的微分方程

岩层在地应力作用下,流体流动朝3个方向进行。根据连续性方程和达西定律可以得出三 维流体运动的微分方程^[3,4]:

$$\frac{\partial}{\partial x}(k_x\frac{\partial\Phi}{\partial x}) + \frac{\partial}{\partial y}(k_y\frac{\partial\Phi}{\partial y}) + \frac{\partial}{\partial z}(k_z\frac{\partial\Phi}{\partial z}) + A = C\frac{\partial\Phi}{\partial t} + G\frac{\partial\sigma_0}{\partial t}$$
(12)

式中: **Φ**为运移势; σ₀为地应力的平均值; A表示有源存在,例如生油层的存在, A的大小表示源的强度; C为储集系数; G为与岩石压缩率有关的系数。

上式可简写为:

$$\nabla^{T} K \nabla \Phi + A = C \frac{\partial \Phi}{\partial t} + G \frac{\partial \sigma_{\sigma}}{\partial t}$$
(13)

$$K = \begin{bmatrix} 1 & x & 0 & 0 \\ 0 & K_y & 0 \\ 0 & 0 & K_y \end{bmatrix}$$
(14)

$$\nabla = \left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right] \tag{16}$$

$$\nabla^{T} = \left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right]^{T}$$
(15)

如果流体在流动过程中,地应力不随时间变化,即 $\frac{\partial \sigma_0}{\partial t} = 0$,那末式(13)变为:

$$\nabla^{T} K \nabla \Phi + A = C \frac{\partial \Phi}{\partial t}$$
(17)

若即不考虑地应力随时间的变化,也不考虑地层可压缩性,且研究区内无源存在,则式 (17)变为:

$$\nabla^T K \nabla \Phi = 0 \tag{18}$$

实际问题中多考虑二维问题,对于二维问题,则有

$$\nabla^{T} = \left(\frac{\partial}{\partial x} \cdot \frac{\partial}{\partial y}\right)^{T} \tag{19}$$

5

$$K = \begin{bmatrix} K_x & 0 \\ 0 & K_y \end{bmatrix}$$

式(13)、(17)称为瞬态流动方程,也称为非定常流动方程。式(18)称为稳态方程或定常流 动方程。解上述方程,可得到地应力空隙压力,运移势随空间和时间的变化规律。得出油气运 移的等势线和流动矢量。

5 运移势微分方程的有限元公式

上述运移势场的微分方程求解一般比较困难,只对非常简单的情况可求得解析解。边界条件稍复杂一些则不能用解析法求解。这时,只能用数值解法,如有限元法,有限差分法等。下面 我们讨论二维情况下的有限元公式。

用有限元法求解时,是应用变分原理,将求解微分方程变为求解线性方程组:

$$C\Phi + K\Phi = F \tag{21}$$

式中: C及K为系数矩阵,F为载荷。

对于稳态问题上式变为:

$$K\Phi = F \tag{22}$$

此方程可通过三角分解直接求解。

当流体在流动过程中,地应力发生变化,即在流动当中,由于流体的耗散,孔隙压力发生变化,因而地应力也随着变化,这时需用下列有限元公式求解:

$$\begin{bmatrix} \overline{K} & K' \\ K'^{T} & \widetilde{K} \end{bmatrix} \begin{cases} \delta_{t} \\ \beta_{t} \end{cases} = \begin{cases} R \\ S \end{cases}$$
(23)

解此方程组,可同时得出节点位移、地应力、流体压力或流体势的空间分布以及随时间的 变化。

式中: R 为外荷载;S 为前一时刻各结点处的体积压缩量。

$$S = K' \{ \delta_i - \Delta_i \}$$
⁽²⁴⁾

可由前一时刻的位移得出

 $\delta_i - \Delta_i$ 为前一时刻结点位移; δ_i 为结点 t 时刻的位移; β_i 为 t 时刻结点的孔隙压力; \overline{K} 为刚 度矩阵;K'为结点周围体积改变量矩阵; K'^T 为 K'的转置; \overline{K} 为 Δt 时间内由结点周围排出的流 量矩阵。

解题时,从t=0时刻开始,每次增加一个 Δt ,用式(23)解出 δ_i 和 β_i ,并由式(24)求出S,用 于下一个时刻的求解。如此反复可至任一时刻。与此同时,又可解出应力和应变分布。这样在 一次计算中可同时得出流体压力、位移、应变、应力以及他们随时间的变化。

6 辽河油田地应力测量与应力场

使用钻孔崩落法^[5],声发射法进行了地应力测量^[6]。主应力方位是由 5 个钻孔崩落资料得 到的,最大主应力与最小主应力的大小由声发射和油井压裂资料获得(表 1)。最大主应力的方 向为近 EW 向(图 1)。

根据地应力实测资料,对应力场进行了反演得到应力场分布的图象。图 2 为反演得到的球

6

图1 辽河油田现今最大水平主应力方位图 (据钻孔崩落法地应力测量结果)

Fig. 1 Direction of maximum horizontal principal stress in Liaohe oil field
1. 井位;2. 砂岩;3. 泥岩;4. 断层;5. 最大水平主应力方向

表 1 辽河油田地应力测量结果

Table. 1 Results of rock stress measurements in Liaohe oil field

钻孔编号	测量深度	最大主应	最小主应	最大水平主
	(m)	力(MPa)	力(MPa)	应力方位
白2井	931	18.5		
	1044		8.6	
	1062		9.6	
	1278	20.8		
白3井	1042	22.2	11.6	
白4井	867		6.6	N85°E
	1010	18.6	10.4	
	1012		10.4	
白5井	967	21.6	11.4	EW
	968		11.4	
	1037	22.7	12.2	
	968		12.2	
白7井	866		8.7	EW
	1052	22.3	11.0	
	1054		11.0	
白 12 井				N82°E
白 15 井				N65°E

注:最太主应力由声发射得到(丁原辰提供);最小 主应力由油井压裂资料获得(任德生提供)

图 2 辽河油田现今构造应力场球应力(平均应力)等值线 Fig. 2 Contour of average tictonic stress in Liaohe oil field 箭头表示油气运移方向;小圆圈表示孔位

应力场的分布。在应力场反演的基础上,我们进行了运移势场的计算,进而研究油气运移的 规律。

7 辽河油田运移势场计算结果

在地应力测量与应力场反演基础上,对辽河油田运移势场进行了计算。岩石渗透率的选择主要 参考油藏描述的有关资料(表 2)。

表 2 岩石渗透率

Table. 2 Permeability of rock

	渗透率(md)
砂 岩	10-20
泥岩	10-15
安山岩	10—20
断层	20-25

图 3 为平面运移势场计算结 果。可以看出运移势场的主要特点 是在油田的北部边缘为高势区,白 1、白 2、白 3、白 4、白 7、白 8、白 10 及西部边缘地区为低势区,总的运 移方向是由西北部和北部向东南 方向运移,在低势区及等势线的斜 坡地带有利于油气的聚集。处于这 些部位的开发井多数都有较丰富 的油藏。

图 4 为剖面运移势场的计算 结果。剖面运移势场是考虑将泥岩

势区,总的运 1北部向东南 及等势线的斜 聚集。处于这 数都有较丰富 图 3 辽河油田运移势等值线

> Fig. 3 Contour of migration potential in Liaohe oil field 箭头表示运移方向;小圆圈表示孔位

作为生油层来处理,由于生油层的存在,油气将由油源向四周运移,研究其等势线分布可知油 气运移的方向。

由图 4 可以看出,生油层较厚的油源处有较高的运移势,向上及向两侧运移势逐渐降低, 油气由生油层向上及向两侧运移。

图 5 为该剖面上几个主要断层及油气运移速度矢量。图中线段代表运移速度的大小和方向。从图 5 可以看出,油气沿断层有较大的运移速度,在运移过程中,遇到断层,油气将沿断层 向上运移。

上面讨论的剖面内运移势场是由生油层的存在而产生的,如果将这种运移势场与地应力 场相叠加,油气由深处向上和两侧运移的趋势更加明显。将这种运移势场与地应力场相对比, 可以发现他们是基本相对应的。即高地应力区一般为高的运移势区。

图 4 辽河油田白 2—白 4—白 7 剖面运移势等值线(箭头表示运移方向) Fig. 4 Contour of migration potential in profile of oil will Bai2-Bai4-Bai7 in Liaohe oil field

图 5 辽河油田白 2—白 4—白 7 剖面上油气运移矢量 Fig. 5 Migration vector of oil and gas in Liaohe oil field

8 结论

地应力是驱动油气运移的主要动力因素之一。在地应力作用下,孔隙岩层内形成流体运动 的高势区和低势区,根据最小位能原理,油气由高势区向低势区运移,并在适当部位集聚形成 油田。本文给出的方法,可根据地应力场用有限元法计算出运移势场。对辽河油田运移势场计 算结果表明,处于低势区及过渡区的油井,大部分产量丰富。结合构造分析进行地应力和运移 势场研究可为油气勘探开发提供依据。

参考文献

1 王仁等,固体力学基础。北京:地质出版社,1979。

2 华东水利学院土力学教研室主编,土工原理与计算。北京:水利电力出版社,1985。

3 R.E 科林斯著,陈钟祥等译,流体通过多孔材料的流动,北京:石油工业出版社,1984。

4 陶一川,石油地质流体力学分析基础。武汉:中国地质大学出版社,1993。

5 王连捷等,利用钻孔崩落法确定深部地应力状态。工程地质.水文地质.环境地质论文集,北京:地震出版社,1993。

6 丁原辰、张大伦,声发射抹录不净现象在地应力测量中的应用。岩石力学与工程学报,1991,10(4)。

CRUSTAL STRESS AND OIL AND GAS MIGRATION

Wang Lianjie Zhang Lirong Yuan Jiayin Wang Wei

(Institute of Geomechanics, CAGS)

Abstract In this paper are discussed the deformation of rock and the pore pressure under the action of crustal stress. The differential equation and finite element formula for fluid flow in a porous rock are described. The oil migration potentials for Liaohe oil field in North China are calculated based on crustal stress measurements and stress field modelling. The results may provide a basis for oil and gas exploration and development.

Key words Crustal stress measurment, Migration of oil and gas

第一作者简介

王连捷,男,1933年生,研究员。1960年毕业于北京地质学院物探系。1963年研究生毕业。 通讯地址:北京市海淀区民族学院南路 11号地质力学研究所。邮政编码:100081。