江西珊城地区主要构造带特征 及控岩控矿作用[®]

朱大岗 刘 迅

(中国地质科学院地质力学研究所)

摘 要 通过对江西珊城多金属成矿区主要构造带的地质构造、构造岩、矿物和岩石的形变相变、构造地球化学、X 光岩组及动力学分析等方面的综合研究,论述了它们的基本特征、力学性质转化及其控岩控矿作用。本文着重指出,在珊城多金属成矿区,沙坊源断裂与南瓜山—冷水坑断裂斜接构成的"入"字型构造,是该区主要的控矿构造;NNW 向构造是该区重要的赋矿构造,目前探明的多金属矿体均沿此方向展布。 关键词 江西珊城 构造带 地质构造特征 控岩控矿作用

1 矿区地质和矿化特征

江西珊城铜、锌、铅、银多金属成矿区,位于赣中 EW 向构造带武功山一北武夷山隆起带 与新华夏系怀玉山一武夷山复式隆起带交汇处的金溪地区^[1]。印支一燕山期构造活动强烈,宏 观可见区域性 NE 向压扭性断裂(沙坊源断裂)、NNW 向张扭性断裂(F₁)、近 EW 向张性断裂 (充填有花斑岩)、NW 向张扭性断裂(F₂)和 NNE 向压扭性断裂。变形变质环境早期(印支期) 为韧性,带内发育有糜棱岩系列的岩石;晚期(燕山期)为脆性,带内发育有碎裂岩系列的岩石。 矿脉产于张扭性断裂带(F₁)中,赋矿围岩为加里东期震旦系下统上施组(Z₁sh)绿片岩相变质 岩和加里东中期黑云母斜长花岗岩(Yo²₃)(图 1),成矿时期为燕山期。

主要含铜矿脉为充填在 NNW 向断裂带(F₁)内的中基性脉岩(以闪长玢岩为主)分布地 段,延长达 6000m 以上。矿体呈大小不等的透镜体产于糜棱岩化闪长玢岩与糜棱岩化混合花 岗岩之间(图 2),已知最大矿体长达 485m。一般地讲,当闪长玢岩受后期构造强烈破环发生碎 裂岩、糜棱岩时,且蚀变越强烈,矿化越佳。钻孔中采集的样品化学分析结果,在断裂带的不同 构造部位和地段有所变化,Cu 0.36-4.28%;Zn 0.56-4.28%,最高可达 9.47%;Pb 3.25%; Ag 15.06-1227.50g/t;S 4.15%,总的趋势是从南到北 Cu、S 品位降低,Zn、Pb、Ag 品位增 高。

矿石呈细脉浸染状或团块状,金属矿物有黄铜矿、闪锌矿、斑铜矿、黄铁矿、方铅矿、磁黄铁 矿等;脉石矿物为石英、绿泥石、绢云母、黑云母、方解石等。矿化与硅化、黄铁矿化、绢云母化、 黑云母化、绿泥石化等蚀变关系密切,主要沿断裂带展布,分带不明显。

① 本文为地矿部"八五"科技攻关项目"武夷 ~云开典型成矿区矿产预测"所属专题研究成果之一。

图1 江西省金溪县珊城地区地质构造简图

Fig. 1 The regional geological sketch of the Shancheng area of Jinxi county,

Jiangxi province

1. 第四系;2. 震旦系下统上施组一段;3. 震旦系下统上施组二段;4. 花斑岩(脉);5. 花岗斑岩;6. 闪长玢岩脉;7. 正长斑岩脉;8. 黑云母斜长花岗岩;9. 均质一阴影状混合岩;10. 条带状混合岩;11. 硅化破碎带;12. 地质界线;13. 混合岩化界线; 14. 断层及编号;15. 推测断层;16. 片理产状;17. 老窿;18. 构造剖面位置;19. 岩组样及编号

2 主要构造带展布特征

本区构造以断裂为主,主体构造是以沙坊源断裂为代表的 NE 向断裂系统。它是在华夏系构造的基础上,由早期新华夏系归并、改造、复合的结果,构成该区主导控岩控矿构造型式^[2]。 该断裂派生的 NNW 向南瓜山一冷水坑断裂,是控制该区多金属分布最重要的含矿构造,目前

Fig. 2 The geological section of C-D exploration line in Lengshuikeng area
1. 黑云母斜长花岗岩; 2. 闪长玢岩; 3. 构造角砾岩; 4. 硅化、钾化、碎裂岩化; 5. 第四系; 6. 矿脉;
7. 断层; 8. 地化样及编号; 9. 岩石样及编号

探明的多金属矿体都沿 NNW 向断裂分布。

2.1 沙坊源断裂带

沙坊源断裂带总体走向 NE,局部 NNE,倾向 NW,倾角 50°-70°,影响宽度较大,由一系 列近于平行的冲断层或斜冲断裂构成。沿断裂带发育有构造破碎带、硅化蚀变带、劈理化带、片 理化带、挤压透镜体带和糜棱岩化带,显压扭性。主要发育在震旦系上施组(Z₁sh)的云母石英 片岩、黑云斜长片麻岩、变粒岩、条带状混合岩等变质岩中。

2.2 南瓜山一冷水坑断裂带(F₁)

南瓜山一冷水坑断裂带总体走向 NNW(340°左右),倾向 SW,倾角 28°-62°,平面及剖面 上均呈舒缓波状形态,宽约数米至数十米(图 2)。北部(南瓜山地段)以破碎、角砾岩化为主,见 镜面及斜向擦痕,黄铁矿化、褐铁矿化较发育;南部(冷水坑地段)硅化、绿泥石化、绢云母化及 碎裂岩化、糜棱岩化发育。断裂具有多次活动特点,早期表现为张扭性,有闪长玢岩脉充填;晚 期显压扭性,挤压破碎、劈理化、糜棱岩化都很发育。

2.3 近 EW 向构造带

本区大体可分两个亚带:北部为宝山带,以近 EW 向展布的花斑岩〔?π(f)〕脉充填形式表现出来;南部熊家山带,由马窑、足米峰、熊家山等花岗斑岩(?π^{3-2a})体呈近 EW 向分布组成。 还发育一系列近 EW 向张扭性断裂,并常见密集劈理化带、碎裂岩带、构造角砾岩带等,但规 模不大,连续性较差。

2.4 NW 向断裂带(F₂)

NW 向断裂带由硅化构造角砾岩、碎裂岩、梳状石英脉、劈理化带、片理化带等组成,总体 走向 NW,倾向 SW,倾角 60°,早期显张性或张扭性,晚期为压扭性。另外,在南部足米峰一带 的正长斑岩(*ξ*,)脉和宝山一带的部分花斑岩脉,也呈 NW 或 NWW 向展布。

3 主要构造带显微构造特征

在构造动力作用下,岩石和矿物的物理、化学性质发生变化,产生形变与相变,伴随元素迁 74 移聚散和成岩成矿过程[3],这一过程的产物在显微领域内具有更明显的特征。

3.1 构造岩的基本类型

本区构造岩的分类采用构造岩结构成因分类命名方案[4],主要构造带构造岩特征见表1。

表 1 珊城地区主要构造带构造岩分类特征

Table 1	The typical	characteristics	of th	he tectonite of	the ma	in tectonic	zones in	Shane	heng	area
Table T	The typical	characteristics	01 (1	ne rectonne of	the ma	m rectorne	Doneo m	onune	meng '	urcu

主 要 构造带	总体产状	分布	力学性质	脆性形变 构 造 岩	脆-塑性形变 构造岩	塑性形变 构 造 岩	备注
沙坊源 断裂带	320°—305° ∠50°—70°	沙 坊 源、 符 竹、马 街	压(压扭) ↓ 张扭	硅化张扭性角 砾岩、碎斑岩 化混合花岗 岩、碎裂岩化 绿泥石片岩	碎裂岩化糜棱 岩、花 岗 糜 棱 岩	云母石英构造 片 岩、混 合 片 麻岩	区域性主干 新裂
NNW 向 断裂带	250°∠28°—62°	冷水坑、 南瓜山、 仙人担石	张扭 ↓ 压扭	碎裂花斑岩、 硅化角砾岩、 糜棱岩化碎斑 岩、硅化碎裂 岩、碎裂混合 花岗岩	碎裂岩化糜棱 岩、花 岗 糜棱 岩、花 岗 质 粗 糜 棱 岩、花 岗 质超糜棱岩	细晶条带状片 糜 岩、条 带 状 混合岩	本区主要断 裂(F ₁)和赋 矿构造
近 EW 向 构造带	360°∠42°—70°	宝 山、熊 家 山、马 窑	张性 ↓ 张扭	碎裂花斑岩、 花岗斑岩质角 砾岩、张裂岩 化花岗斑岩	花斑岩质粗糜 棱岩	:	分为早期近 EW 向花斑 岩脉和晚期 张扭性断裂
NW 向 断裂带	230°—210°∠60°	王 东 顶、 马 窑、熊 家 山、足 米峰	张性 (张扭) ↓ 玉扭	花 岗 质 角 砾 岗 质 角 砾 岗 混 登 贵 府 花 뉞 质 奇 花 뉞 混 碎 裂 齿 木 成 府 花 岗 盾 花 뉞 质 府 花 岗 盾 花 混 所 斑 岩	混合花岗质粗 糜棱岩、混合 花岗质糜棱岩	混合片麻岩	由断裂(F2) 和 NW 向展 布的岩脉组 成

3.1.1 **沙坊源断裂带** 该断裂带中塑性、脆性和脆-塑性构造岩都十分发育,反映出该断裂带 有多期活动,力学性质从压(压扭)性向张扭性转变,即先期形成塑性形变构造岩,又叠加脆性 形变,显示退化动力变质现象。

3.1.2 NNW 向断裂带(F₁) NNW 向断裂带脆-塑性形变构造岩特别发育。北部南瓜山地段 早期脆性形变较发育,形成一系列构造角砾岩、碎裂花斑岩、硅化碎裂岩。当断裂带由张扭性转 向压扭性时,又形成一系列糜棱岩化构造岩(如糜棱岩化碎斑岩等),但强度较冷水坑地段弱。 南部冷水坑地段晚期压扭性应力作用表现明显,以脆-塑性形变的粗糜棱岩一糜棱岩一超糜棱 岩为代表。可见构造岩的演化有从北至南逐渐变强的趋势。从构造岩结构构造演化来看,有从 张性(构造角砾岩)向张扭性(碎裂岩)、压扭性(糜棱岩、片糜岩、构造混合岩)再向张性(碎裂岩 化糜棱岩)发展的趋势。

3.1.3 近 EW 向构造带 近 EW 向构造带以脆性形变为主,脆-塑性形变弱,反映构造作用 强度不大,持续时间较短。早期张性强度较小,可能是花斑岩脉侵入后冷凝收缩引起,方向性不 明显;晚期张扭性应力作用反映较敏感,且具有一定规模。

3.1.4 NW 向断裂带 该断裂带经历了早期张性(张扭性),晚期压扭性的转换,但后者强度 较大,主要显示的还是脆性、脆-塑性形变的特点。

3.2 岩石、矿物的形变与相变

本区主要构造带中矿物、岩石的形变与相变特征(表 2),有从脆性→脆-塑性→塑性形变的反映,但各个构造带强度不同,表现形式也有所差别。总的来说,各构造带中主要以形变为主,相变发育较差,新相矿物(构造成因矿物)^[5]较少,常见各种构造变形现象。表明该区构造动力热流不发育,应力强度不大。

表 2 珊城地区主要构造带形变相变特征

main tectonic zones in Shancheng area

主 要 构造带	脆性形变	脆-塑性形变	塑性形变	新相矿物	重结晶	混合 岩化	蚀变特点
沙坊源 断裂带	碎裂岩化、角砾岩 化、碎斑岩化、显微 裂隙、显微劈理	片 麻 理 化、糜 棱 岩 化、机 械 双 晶、条 带 状 构 造、片 理 化	波状消光、吕氏纹、 石英亚晶粒、石英 压扁拉长、透镜体 化、变形纹	蠕 英 石、 微 斜 长 石、条 七 石、 板 七 石、 梳 状 石 英	强	强烈	绢云母化、粘土化、 硅化、碳酸盐化、绿 泥石化、褐铁矿化
NN₩ 向 断裂带	碎裂岩化、角砾岩 化、碎斑岩化、显微 裂隙、显微劈理	糜棱岩化、超糜棱 岩化、粗糜棱岩化、 云母扭折、机械双 晶、带状构造、片理 化、沙钟构造	波状消光、带状消 光、石英亚晶粒、双 晶扭曲、矿物压扁 拉长,云母扭曲,扁 豆体化,变形纹、压 力影	金 红 石、	较强	较强	绢云母化、粘土化、 硅化、黑云母化、白 云母化、黄铁矿化、 磁铁矿化、萤石化、 斜黝帘石化、碳酸 盐化、褐铁矿化
近 EW 向 构造带	碎裂岩化、角砾岩 化、显微裂隙、显微 扭错	粗糜棱岩化	波状消光、不完全 变形纹、云母扭曲、 扇豆体化	环 帯 石 英、杭 石 英 ズ 石 英 代 石 、 (微 斜 长 石 、 、 統 、 、 統 、 新 、 新 、 新 、 新 、 新 、 新 、 新	弱	无	绿泥石化、绢云母 化、粘土化、硅化、 磁铁矿化、碳酸盐 化、褐铁矿化
NW 向 断裂带	碎裂岩化、角砾岩 化、碎斑岩化、显微 裂隙	粗糜棱岩化、糜棱 岩化、条带状构造、 片理化、石英扭裂、 机械双晶	吕氏纹、矿物压扁 拉长、云母扭曲 石英亚晶粒、扁豆 体化、双晶扭曲、不 完全变形纹	 梳状石 英、蠕奏 石、微斜 长石、条 纹长石 	较强	较强	绢云母化、硅化、粘 土化、白云母化、萤 石化、绿泥石化、碳 酸盐化、褐铁矿化

3.2.1 沙坊源断裂带 该带中矿物、岩石由脆性向脆-塑性再向塑性形变转化的现象较普遍, 相变现象也较明显,构造片岩和构造混合岩的出现,表明构造动力热流活动的存在;而强烈的 重结晶和混合岩化现象,反映构造应力从压(压扭)性向张扭性的转变。

3.2.2 NNW **向断裂带** 该构造带的岩石、矿物中,重结晶和混合岩化作用较强,脆性、脆-塑性、塑性形变均较发育,尤其是脆-塑性形变更为发育,蚀变现象也更加明显,但相变较弱。

3.2.3 近 EW 向构造带 近 EW 向构造带中重结晶作用不强,无混合岩化现象,矿物、岩石 变形以脆性为主,脆-塑性和塑性形变不显著,具开放式蚀变特点。

Table 2 The feature of the deformation and phase change of the

3.2.4 NW 向断裂带 该带重结晶和混合岩化作用均较强,脆性、脆-塑性形变特征明显,塑性形变现象也可见到,但不甚发育,可见少许相变现象,蚀变也很发育。

4 主要构造带地球化学特征

根据对该区铜、锌、铅、银矿床特征、控矿构造型式,以及构造地球化学研究,初步厘定 NNW 向南瓜山一冷水坑断裂(F₁)与区域性 NE 向沙坊源断裂组成一个"入"字型控矿构造, 控制该区多金属矿床和矿化的形成与分布。

4.1 沙坊源断裂带

该断裂带中部微量元素 As、Sb、Mo、Ba 等含量较高;矿化元素 Cu、Zn、Pb、Ag、W、Sn、Mn 等丰度较高和高峰值部位主要受低级别的 NE 向断裂构造、破碎带和裂隙带的控制。其中 Zn 的异常最为突出,大都在 500-3000ppm 之间,高出维氏丰度值 6-37 倍;Ag 的个别样品也超 过维氏丰度值 10-100 倍,其它微量元素异常不明显,仅有个别样品(如 Mn)超过维氏值 15 倍。

4.2 南瓜山一冷水坑断裂带(F₁)

把该断裂 3 条剖面作的分析结果(图 3、图 4),与矿区同类岩层中元素含量加以比较,发现 有以下特征:(1)常量元素 Fe、Mg、Al 靠近断裂带中心部位,含量明显高于外部;Ca、Na、K 则 在断裂中心向外的部位含量较高,表明离子半径小,比重大的元素在构造活动中比较稳定,常 滞留在断裂带的中心部位^[6]。(2)微量元素 Cu、Zn、Pb、Ag、Mo 的含量在断裂带中心部位高, 并在整个断裂带中丰度都高于维氏值。其中 Zn 元素的含量与沙坊源断裂剖面基本一致,也在 100-1000ppm 左右,最高可达 10000ppm;Ag 元素的含量也同样增大,一般高出维氏值 10-100 倍,最高达 500 倍,其它微量元素的变化不明显。(3)断裂带中 Cu、Zn、Ag、Pb 4 种主要成 矿元素呈正相关关系,基本上是同步变化。Cu、Zn 元素变化幅度较大,丰度高;Pb、Ag 变化幅

图 3 南瓜山—冷水坑断裂 400 线剖面微量元素变化曲线

Fig. 3. The content of trace elements in the section of the Nanguashan-Lengshuikeng fault (in the No. 400 exploration line)

度相对较小,一般丰度不高,在断裂的异常部位出现峰值,两者在同步变化中有时形成交替出现的高峰值。

Fig. 4 The content of trace elements in the section of the Nanguashan-Lengshuikeng fault (in the No. 301 exploration line)

5 变形石英X光岩组和动力学分析

根据 X 光岩组分析结果(表 3、图 1),可见石英光轴极密程度不高,对称性较差,反映动力 作用的强度不大,动热流变不显著。但还有一定规律可寻,现结合野外地质情况,将珊城地区主 要构造带力学性质转化及变形构造动力学演化分析如下^[7]:

5.1 NE 向构造

最大主应力 σ_1 为 335°—175°,即 NW—SE 方向挤压(压扭)作用,形成 NE 向断裂带和一系列糜棱岩、云母石英片岩、混合花岗岩等;后期叠加 EW 向和 SN 向张扭性应力作用,形成角砾岩、碎裂岩和碎斑岩,并派生出 NNE 向和 NNW 向小断裂。

5.2 NNW 向构造

最大主应力 σ₁ 为 25°-54°,即 NE-SW 方向张扭性应力作用,形成 NNW 向展布的碎裂 岩、角砾岩、碎斑岩、粗糜棱岩等构造岩,与此相伴有闪长玢岩脉和细晶岩脉贯入。后期 SN 向的压扭应力作用,使先期构造岩糜棱岩化、超糜棱岩化、片糜岩化,局部混合岩化,形成脆-塑性 和塑性形变构造岩,并导致 NW 向展布的极密出现。在细晶条带状片糜岩的 X 光岩组中,还显示了一组近 SN 方向展布的极密,可能代表更晚期近 EW 向的压扭应力作用。

5.3 近 EW 向构造

最大主应力 σ₁ 为 85°-95°,即近 EW 向压应力作用,导致 SN 方向引张,形成近 EW 向张 裂,造成较宽范围花斑岩的贯入,此时变形并不强,后期 44°-57°,即 NE-SW 方向的张扭应 力作用,使花斑岩脉脆性变形,形成一系列脆性形变构造岩,并产生一组呈 NW 向展布的极 密,在野外可见一组走向 320°的断裂发育在近 EW 向构造带中。

5.4 NW 向构造

最大主应力 σ₁ 为 40°-220°方向,即近 NE-SW 方向的张扭(张性)应力作用,形成 NW 向展布的角砾岩、碎裂岩、碎斑岩等,并见有 NW 或 NWW 向较规则的正长斑岩脉、花斑岩脉 的贯入。后期 290°方向的压扭应力作用,在 NW 向构造之上叠加了 NNE 方向展布的粗糜棱岩 - 糜棱岩,局部可见混合片麻岩,说明后期应力作用较早期强烈。

6 主要构造带的控岩控矿作用

力学性质、演化历史、地质背景不同的构造带,其控岩控矿作用也不尽相同^[8]。珊城地区主 要构造带的控岩控矿作用,可概括为以下几个方面。

6.1 构造控岩作用

珊城地区主要构造带,除了对沿构造带展布的构造岩的形成及演化具有明显的制约作用 外,对该区岩体、岩脉的形态及分布也表现出明显的控制作用。

6.1.1 酸性脉岩 包括花斑岩、正长斑岩、花岗斑岩和细晶岩。花斑岩主要受近 EW 向构造 控制,早期花斑岩脉多数呈近 EW 向展布,局部略偏向 NW 或 NWW;少数稍后形成的花斑岩 脉与正长斑岩脉一样,受 NW 向构造控制呈 NW 或 NWW 向展布。花斑岩脉主要分布在宝山、 南瓜山、冷水坑等地段,与围岩接触界线清楚,边部常有流动构造或冷凝边出现,显示出岩脉的 分布与早期近 EW 向、NW 向张性断裂的活动有关。熊家山地段的花岗斑岩,主要受近 EW 向 与 NW 向构造的复合控制。细晶岩则为较晚期的产物,多与 NNW 向断裂相伴生。

表 3 珊城地区主要构造带中变形石英 X 光岩组分析结果

Table 3 The X-ray petrofabric analysis of the deformed quartz of the main tectonic

主要构造带	样品号	采样地点	岩 性	定向面产状	测量内容	切片方位	σ ₁ 方位
NE þj	g-51	沙坊源断裂	碎裂岩化糜棱岩	N15°E/N W ∠48°	石英(1120) 极图	地理水平	335° E— W S—N
NNW 向	g-20	冷水坑 111线	花岗质超糜棱岩	N60°E/NW∠55°	同上	同上	45° S-N
	g-11	宝山 301 线	糜棱岩化碎斑岩	N75°E/直立	同上	同上	25°-54° S-N
	g-38	南瓜山采石场	细晶条带状片糜 岩	310°/S W ∠55°	同上	同上	50° S-N E-W
近 EW 向	g-36	南瓜山采石场	花岗质粗糜棱岩	EW /S∠´85°	同上	同上	85° 95° 44° 57°
NW 向	g-47	王东顶东山梁上	混合片麻岩	320/S W∠ 30°	同上	同上	40°,290°

zones in Shancheng area

注:地质力学研究所 X 光实验室测定。

6.1.2 中基性脉岩 有闪长玢岩、辉绿岩等,主要分布在南瓜山、冷水坑及足米峰至花姑娘山 一带,呈规模不等的小型脉体产出,多呈 NNW 向展布。在平面上呈斜列状,受 NNW 向断裂的 控制,以充填于 F₁ 中段者规模最大,断续延伸达 6km 以上,最宽处 60m,与围岩接触界线清 楚,无明显蚀变,岩脉边沿有时可见数厘米宽的冷凝边。另外,在马尾泉水库一花姑娘山地段, 一些较小的岩脉(以辉绿岩为主),略成 NW 向展布,并切割近 EW 向花斑岩脉。

6.2 构造控矿作用

矿床的形成需要多方面有利的地质和物理化学因素的结合,构造是其中的重要因素^[9]。构 造作用可以明显改变原岩的组构和成分,形成有用的矿物和岩石,在珊城地区这种构造控矿作 用表现明显。

6.2.1 成矿区受"人"字型构造控制 根据化探资料^①,在沙坊源断裂带西北盘的珊城地区有 Cu、Zn、Pb、Ag、Mo 等次生晕异常分布,形成一个近似三角形的区域,其中有冷水坑、宝山、南 瓜山等矿床、矿点和矿化点多处。这种成矿元素地球化学异常的分布形式,是沙坊源断裂与南 瓜山一冷水坑断裂,在该区斜接构成"入"字型构造的具体反映,并严格受其控制。而在南瓜山 一冷水坑断裂带中,Cu、Zn、Ag、Pb 都出现含量异常的高峰值(图 4),这一构造部位乃是断裂 活动特别强烈和闪长玢岩脉发育的地段,对本区矿床的形成和矿化提供了最有利的条件。

6.2.2 矿体受 NNW 向断裂控制 本区已知矿体或矿脉均严格受 NNW 向断裂构造的制约。 在宝山地段 1-7 号老窿均开挖于 NNW 向破碎带中,黄铁矿化、硅化、绢云母化、毒砂化等常 见,围岩为云母石英片岩、黑云母斜长花岗岩等;冷水坑 400 线矿体则产于 NNW 向断裂下盘 闪长玢岩脉内及与黑云母斜长花岗岩的接触带中(图 2)。

6.2.3 矿化带受 NNW 向断裂系控制 从珊城地区构造特征来看,F₁ 实为一斜列的 NNW 向构造,与之平行在熊家山一采石场也见到 NNW 向断裂,只是地表规模较小、矿化较弱而已。在 F₁ 的东侧,沿宝山 1-7 号老窿也组成 NNW 向构造,沿此向南同样也存在 NNW 向构造,这 一点由花姑娘山地段出露的 NNW 向展布并略见矿化的闪长玢岩脉得已证实。另外,在冷水坑 400 线东侧的 ZK4004 孔见 1.20m 厚的矿层,也产于闪长玢岩与黑云母斜长花岗岩接触带的 下盘,并见有糜棱岩化和硅化,说明 NNW 向断裂的存在。这几条 NNW 向闪长玢岩脉的间距 约 500-700m,多与断裂相伴,带与带之间多发育有为数众多的 NWW-NW 向的各类岩脉。

本文是在江西省地矿局九一二地质大队工作成果的基础上完成的,工作中得到省地矿局 杨明桂总工程师和九一二队黄志强、杨恩湛高级工程师、赵志刚工程师等同志的大力支持和帮助,在此表示衷心的感谢。

参考文献

- 1 江西省地质矿产局,江西省区域地质志。北京:地质出版社,1984。
- 2 刘迅等,北武夷山及其外围地区控矿构造与成矿预测。北京:地震出版社,1994。
- 3 王小凤、王岩国等,构造动力作用下矿物的形变与相变。地质力学文集(9),北京:地质出版社,1989。
- 4 朱大岗、王治顺,构造岩的结构成因分类与命名。地质力学研究所所刊(16),北京:地质出版社,1995。
- 5 靳是琴、李鸿超,成因矿物学。长春:吉林大学出版社,1986。
- 6 杨国清,构造地球化学。桂林:广西师范大学出版社,1990。
- 7 姜光喜、刘兆霞、魏大海,X射线岩组方法。地质力学研究所所刊(5),北京:地质出版社,1985。
- 8 孙殿卿、高庆华,隐伏矿床预测。北京:地质出版社,1987。
- 9 翟裕生、林新多等,矿田构造学。北京:地质出版社,1993。
 - 据江西省地矿局九一二地质大队资料(1979、1991)。

ON FEATURES OF THE MAJOR TECTONIC BELTS OF THE SHANCHENG POLYMETALLIC ORE-FORMING AREA, JIANGXI PROVINCE AND THEIR CONTROL OF ROCKS AND MINERALS

Zhu Dagang Liu Xun (Institute of Geomechanics, CAGS)

Abstract A study of the major tectonic belts in the Shancheng polymetallic ore-forming area has been made mainly by an analysis of the structural features, the tectonite, the deformation and phase changes of the minerals and rocks, the tectonogeochemistry, the X-ray petrofabrics and the dynamics. The basic features of these zones, the change of their mechanical properties and their control of rocks and minerals are discussed. As a result, an ore prognosis is attempted. The authors point out that the lambda-type structure composed of the Shafangyuan fault and the Nanguashan-Lengshuikeng fault is the major ore-controlling structure and that the west-northwest structure is an important host structure in the area along which the presently explored ore bodies are distributed.

Key words tectonic belt, geological characteristics, rock-controlling and ore-controlling structure

第一作者简介

朱大岗,男,1951年生,副研究员,1978年毕业于南京大学地质系,主要从事显微构造、构造地球化学、矿田构造方面的研究。通讯地址:北京市海淀区民族学院南路11号地质力学研究所。邮政编码:100081。