根据断层泥的微观特征探讨断层的活动性.

张秉良 方仲景 李建国 (国家地震局地质研究所)

崔四平 (中国地质科学院地质力学研究所)

摘 要 含有粘土矿物的断层泥在断层中分布较广,且易于变形,能较好地记录断层 活动的历史。本文以含有粘土矿物的断层泥为试样做粘滑、蠕滑模拟实验,将实验产物 与原断层泥的显微结构特征相对比,结合宏观地震地质资料进行综合分析,认为断层 泥的显微结构特征与断层的粘滑、蠕滑运动有一定的关系。

关键词 断层泥 显微结构 粘滑 蠕滑

0 引言

断层滑动具有稳定滑动(蠕滑)与非稳定滑(粘滑)两大特性,蠕滑断层发生强震的可能性 较小,而粘滑断层则可能发生强震。有些断层现代地貌形态显示明显的错动,但却没有大的地 震记载,这种断层可能具有以蠕滑为主的活动方式。它所发生的地震不论是震级还是周期一般 都显著减小。地表出露的各种断层,在历史时期曾经历过什么样的活动方式,是评价断层活动 性的重要依据之一。因此,确定断层的活动方式就显得特别重要。

目前对断层活动方式的识别,很大程度上还是依据野外宏观考察和有关资料的综合分析。 近年来,国内外学者越来越重视断层物质的研究^[1-4],因为断层物质是断裂作用的直接产物, 它存有断层活动历史的记录,即断层运动的遗迹。Sibson(1977)^[5]认为,断层泥是断裂作用下 形成的具有特殊结构构造的变形物质;并认为,断层泥的结构至少是在剪切过程中产生的。 Moore(1989)^[6]用页岩作实验材料,对断层不同滑动方式作模拟实验,结果表明,不同滑动方 式会在实验产物中留下不同的显微结构。由于含粘土矿物的断层泥在断层中常见,且易变形, 能较好的记录断层活动的历史,因此,笔者采用含粘土矿物的断层泥做粘滑、蠕滑实验,对比试 验前后断层泥的微观特征,结合断层的宏观地震地质资料,研究断层粘滑、蠕滑的微观特征。

1 断层泥模拟实验产物的微观特征

70年代至今,很多学者曾使用不同的材料,如石英、方解石等,做过断层剪切滑动性状与 变形特征的模拟实验研究工作(Logan,1979;马瑾,1985;马胜利,1995)。他们多使用单一物质 作断层泥实验材料,对断裂活动过程中的力学性质作了有益的探讨。作者采用含伊利石的断层 泥作试验材料,模拟不同温度、不同压力条件下,试样的粘滑、蠕滑剪切实验,探讨断层泥的再

^{*} 地质矿产部地质力学开放研究实验室、地震科学联合基金资助。

生显微结构与断层活动方式之间的关系。依 据实验前后断层泥的显微结构特征,反过来, 可以推断原先断层变形时的活动方式。

1.1 模拟实验方法

试样采自云南小湾电站工区 F₁ 断层平硐 中。断层泥中伊利石占 46.2%,其余为长石和 石英碎屑。将试样加工成 0.65 mm 左右的薄 板,在 50℃的恒温下保持半小时,然后将其置 于岩石锯切斜面中,在 Griggs 型固体介质三 轴实验装置上进行实验。试样的厚度是以重 量来控制的,即假设孔隙度为零,用其密度乘 以层厚和面积即是断层泥试样重量。

实验装置结构示意图如图 1,试样就夹在 圆 柱形岩石试件(底面直径 10mm,棱高 20mm)的锯切斜面中,斜面与棱间的平面夹

角为 35°左右。样品的实验条件列于 表 1,实验温度为 50-600℃,围压为 50-600MPa。在温度和围压分别为 600℃, 100MPa; 400℃, 75MPa; 200℃,50MPa 时为粘滑;温度和围 压 分 别 为 50℃,75MPa; 50℃, 50MPa 为蠕滑(图 2)。

1.2 实验后断层泥的显微结构特征

在不同实验条件下,利用三轴实 验装置对含伊利石断层泥的试样作 剪切实验,获得实验产物 18 个,其中 蠕滑样 8 个,粘滑样 10 个。断层泥剪 切错动带内部破裂形式曾有很多学 者在不同实验条件下,对不同组分的 断层泥破裂面基本上可归纳为 6 类 (图 3)。实际上 6 组破裂同时出现的 极少,这可能与断层泥的成分、变形 时的压力及应变速率有关。断层泥再 生结构的岩相学研究表明,含有伊利 石的断层泥变形结构特征与断层的 滑动方式有一定的关系。实验产物的 变形结构从均匀变形到仅有局部强

烈变形,碎屑破裂从晶内微裂隙到随机穿晶破裂,吕德剪切角从小到大,结构类型可粗略地分 为 A、B 两类(表 1)。

图 3 模拟断层泥带破裂结构面基本 类型示意图(据 Logan,1979)

Fig. 3 Schematic diagram of basic types of fracture structural faces of sumulated deformed gouge 破裂方位 R1, R2, T, X, P和 Y 如箭头所示

表1 实验条件和结果一览表

Table. 1 Summary of experimental Condition resucts

实验样号	位移速率 μm/s	温度 C	围压 (MPa)	结构类型	剪切角	滑动	类型
No. 1	4.4	50	50	B,A	2-10°	粘	滑
No. 2	4.4	200	50	В	7-18°	粘	滑
No. 3	4.4	50	75	В	2-15°	粘	滑
No. 4	4.4	400	75	В	9-14°	粘	滑
No. 5	4.4	50	100	В	8-15°	粘	滑
No. 6	4.4	600	100	В	$2 - 16^{\circ}$	粘	滑
No. 7	4.4	50	75	В	$14 - 17^{\circ}$	丨粘	滑
No. 8	4.4	400	75	В	6-14°	丨粘	滑
No. 9	4.4	50	50	B、A	8-15°	丨粘	滑
No. 10	4.4	50	50	B、A	8-17°	丨粘	滑
No. 11	4.4	50	50	A	$7 - 10^{\circ}$	蟜	滑
No. 12	4.4	50	50	A	3-7°	蟰	滑
No. 13	4.4	50	50	A	2-9°	蟜	滑
No. 14	4.4	50	50	A	68°	蠕	滑
No. 15	4.4	50	75	A	$6 - 10^{\circ}$	蠕	滑
No. 16	4.4	50	75	A	5-7°	蟜	滑
No. 17	4.4	50	75	A B	8-10°	螹	滑
No. 18	4.4	50	75	A,B	814°	蟜	滑

A 类结构 最显著的特征是断层泥均匀变形(图 4a)。泥内和泥一岩界面没有明显的界 线。在正交偏光镜下,样品中的粘土矿物沿 P 方向一般显示定向排列,粘土矿物的组构出现一 系列低角度消光带,扭折带几乎覆盖整个视域,呈扭折/褶皱组合,褶皱不对称,短翼较直,吕德 剪切较发育,偶尔能看到一组从 R₂ 到 X 范围的剪切,有时沿 R₁ 方向出现一窄带。这个窄带与 断层面交角较小,一般仅 3-6°,最大不超过 14°,断层泥中的碎屑常见晶内微裂隙,细小颗粒 间发生相对位移呈现碎裂流构造(图版 I-1)。

B 类结构 最显著的特征是断层泥局部强烈变形,变形几乎都集中在边界剪切和少量吕德剪切上,其余部位极少变形(图 4b)。因为剪切变形区与未变形区之间光性不连续,因此,两者之间界线明显。有些边界剪切带比较宽,约占试样厚度的¹/₅-¹/₃。在窄的边界剪切带中,扭折和褶皱少见,此外,也见沿 Y 和 P 方向的短小剪切,最大吕德剪切角一般大于 14°(图版 I-2)。碎屑物出现随机穿晶裂隙或撞击现象。

实验结果显示,A 类结构基本上是蠕滑的产物,B 类结构大都是粘滑的结果。虽然个别蠕 滑产物中也含有 B 类结构,而粘滑产物中也有 A 类结构,但均为次要结构类型。蠕滑中的 A 类 结构最大吕德剪切角均小于 14°,而粘滑中的 B 类结构最大吕德剪切角都大于 14°。

2 原断层泥的显微结构特征

断层泥是断裂作用下形成的具有特殊结构构造的变形产物。我们对含粘土矿物的断层泥 做三轴剪切实验,粘滑和蠕滑实验产物的岩相学研究结果认为,实验产物的变形特征与断层滑 动方式有一定的关系。笔者将模拟实验产物和原断层泥中的再生显微结构进行对比。从典型 显微构造特征入手分析断层的活动机理。

2.1 研究方法

为了研究断层泥的结构构造所反映的断层的活动性质,需采集定向标本,并确保所采标本 的原始结构不受人为的扰动,为此,样品采集后需用软纸包好,石腊密封,装入硬合以便转运。 室内经多次用环氧树脂浸泡烘干,切制与断层走向垂直和平行的两种薄片,在偏光显微镜下观 测薄片中的结构构造。

2.2 典型断裂断层泥显微结构特征

云南红河断裂南段历史无大地震,所采断层泥中伊利石约占 20%,其余为长石和石英碎 屑。矿物颗粒普遍变形,吕德剪切角约 14°左右,并发育 T 和 R₂ 剪切,具眼球状构造(图版 I-3),剪切角(R₁)和眼球构造形态均显示断层曾受到左旋水平剪切力的作用。水云母的弓形弯 曲显示均匀受力,缓慢变形的特征(图版 I-4)。

海原大沟门断层,1920年曾发生 8.5级大地震。该断层活动较强,断层泥中的黑云母和水 云母约占 22%,其余为长石和石英碎屑。断层泥变形不均匀,其中的水云母呈膝折状(图版 1-5);吕德剪切角(R₁)约 20-30°,Y 剪切发育(图版 I-6)。

云南小湾水电站 I 区所采断层泥中,粘土矿物伊利石约占 46%,其余为长石和石英碎屑,断 层泥呈块状构造,局部发生强烈变形。伊利石集合体呈缎带状充填于碎屑之间,碎砾中先期微裂 纹被后期近于平行的一组裂纹切割,具明显的边界剪切和吕德剪切,吕德剪切角为 15-30°。

上述各断层中断层泥显微构造特征可归纳如下:

(1)断层泥中粘土矿物和碎屑普遍呈定向排列,有时见到眼球状扁豆体。

(2)断层泥均匀变形,粘土矿物集合体呈缎带状,吕德剪切角较小,常见到扭折和褶皱变形,脆性矿物具晶内微裂隙。

(3)有些断层泥仅显示局部变形,具明显的边界剪切,变形区与未变形区界限明显且平直, 很少见到扭折和褶皱现象,脆性矿物出现随机穿晶裂纹。

(4)断层泥呈块状构造,矿物无定向排列,碎砾中可见撞击形成的脆性碎片呈新月形结构。

上述不同的显微构造特征,乃是断层不同的活动方式造成的,而这些特征与粘骨、蠕滑模 拟实验产物中的显微构造相印证。结合地震地质资料综合分析,我们认为:具有上述(1)、(2)两 种显微构造特征的断层泥是断层蠕滑的结果;具有(3)、(4)两种显微构造特征的断层泥是断层 粘滑的产物。

3 结果和讨论

(1)粘滑。断层泥不均匀变形,变形区与未变形区界限明显,最大吕德剪切角(R_i)大于 14°,脆性矿物出现随机破裂,粘土矿物发生膝折,常常见到牵引褶皱。

(2) 蠕滑。断层泥均匀变形, 微褶皱呈宽缓型, 吕德剪切角(R1) 小于 14°, 脆性矿物出现碎

裂流动,常常见到不对称压力影或眼球状构造。

(3)断层活动方式不同,导致断层泥的结构再生效应的差异。断层泥的显微结构是断层活 动造成矿物集合体相对位置发生变化而产生的,它不仅仅是单一矿物的形态差异,而且也是断 层活动的综合效应。

(4)模拟实验是在简单可控条件下进行的,实验产物的显微构造特征也比较清晰,实际上,断 层中的断层泥是长期复杂地质环境中的产物,它的微观结构比实验产物复杂得多。实验条件与实 际地质环境之间尽管存在着差异,但运动方式是类似的,二者之间微观特征是可以对比的。

(5)断层活动具多期性及力学性质的复杂性。断层泥中后期活动变形现象往往叠加或掩饰 早期变形。若粘滑发生时代新,活动性强,变形产物中自然主要显示粘滑特征;若新构造活动以 蠕滑为主,变形产物中也将主要表现蠕滑形迹。这些复杂的变形遗迹,若能仔细观察,采用多种 手段测试鉴定,并结合野外实际地质情况,是可以加以区分的,并有可能了解断层的活动性质 及其过程。

作者对林传勇、张培震、史兰斌、白嘉启等同志给予本课题的许多指导和帮助,深表谢意!

参考文献

- 1 何永年、杨主恩,古地震微观标志的研究及意义。中国地震,1985,1(3):76-81。
- 2 夏铮、姚孝新,沂沐断裂带断层泥的研究。中国地震,1988,4(3):152-158。
- 3 张秉良、方仲景、林传勇,活断层中断层泥的显微构造特征及其意义。科学通报,1993,38(4):1036-1038。
- 4 史兰斌、林传勇、何永年,康定一磨西断裂带断层岩及其断裂活动特征。地震地质,1992,14(2):97-113。
- 5 Sibson 著,何永年、林传勇译,地震与地壳断层带中的岩石变形。地震地质译丛,1986,8(6):1-10。
- 6 Moore, The effects of sliding velocity on the frictional and physical properties of heated fault gouge. Pure and Applied Geophysics. 1986,124.

ACTIVITIES OF FAULTS AS DETERMINED FROM THE MICROSTRUCTURAL FEATURES OF THE CLAY GOUGE

Zhang BingliangFang ZhongjingLi JianguoCui Siping(Institute of Geology SSB)(Institute of Geomechanics, CAGS)

Abstract Fault gouges rich in clay minerals are widely found in natural faults. The history of the activity of a fault is often recorded in the soft and easily deformed fault gouges. In the paper, a modeling of the stick-slip and creep-slip of faults with natural fault gouges is made. The nicrostructural features so produced is compared with those of natural fault gouges. An integrated analysis with the macro-seismogelogic data suggests a definite relationship between the microstructural features of fault gouges and the stick-slip or creep-slip of faults. **Key wores** fault gouge, microstructure, stick-slip, creep-ship

第一作者简介

张秉良,男,48岁,副研究员。从事地震地质、岩矿学方面的研究。通讯地址:北京德胜门外 祁家豁子国家地震局地质研究所。邮政编码:100029。

I-1 试样在压力为 75MPa,温度 50℃时,蠕滑产 生的碎裂流动现象。箭头示滑动方向。单偏光,16× 8

I-2 试样在压力为 100MPa,温度 600℃时,粘滑 产生的吕德剪切角(R₁)=20°。箭头示剪切滑动方 向。单偏光,16 碎裂流动现象。箭头示滑动方向。单 偏光,16×4

I-3 云南红河断裂断层泥中水云母呈弓状弯曲。 正交偏光,16×4

1-4 云南红河断裂断层泥中水云母呈弓状弯曲。 正交偏光,16×8

1-5 海原大沟门断层泥中膝折状水云母。单偏光, 16×8

1-6 海原大沟门断层泥中吕德剪切角(R₁)=20-30°, y 剪切发育。正交偏光,8×8