Geo-safety challenges against the site selection of engineering projects in the eastern Himalayan syntaxis area
-
摘要:
喜马拉雅东构造结是全球构造活动最强烈、地质环境最复杂、地质灾害最频发的地区之一, 工程规划建设面临板块构造带的构造错断、深埋工程灾变、松动山体失稳、流域性地质灾害链等灾难性地质安全风险。如何在活动构造带内选择相对稳定与安全的场址, 实现工程规划建设与运营的地质安全风险最小化, 是当前工程地质领域的重要课题。文章系统梳理了东构造结地区重大地质安全问题, 发现传统的工程选址理论已无法满足喜马拉雅东构造结工程选址的要求, 工程选址面临地质演化过程与工程区地质建造不清、构造活动性与强震灾害风险突出、深部构造应力场与灾变研究薄弱、超高位超远程地质灾害链形势严峻等重大地质安全挑战。为此, 文章从"区域地质演化与工程地质问题" "活动断裂及工程安全风险" "复杂地应力场及工程灾变风险" "流域性地质灾害链工程风险" "东构造结工程选址理论方法"共5个方面提出工程选址主要研究方向, 为完善工程选址风险评价与防控方法提供思路。
Abstract:The eastern Himalayan syntaxis is one of the regions having the most intense tectonic activities, the most complex geological conditions, and the most frequent geohazards in the world. The planning and construction of engineering projects are faced with four types of catastrophic geo-safety risks, including tectonic faulting in the plate tectonic belt, disaster occurrence of the deep-buried tunnels, instability of loose mountains, and regional geological disaster chain. It is a critical topic in the field of engineering geology how to select relatively stable and safe sites in active tectonic zones to minimize the geo-safety risks of planning, construction, and operation of engineering projects. This paper summarized the major geo-safety problems in the eastern Himalayan syntaxis. Accordingly, it revealed that traditional site selection theories hardly satisfy the requirements of the engineering projects in the eastern Himalayan syntaxis area. The site selection encounters geo-safety challenges caused by unclear geological evolution process and construction, prominent disaster risk of tectonic activity and strong earthquake, weak research on the deep tectonic stress field and disaster evaluation, and severe ultra-high-elevation and ultra-long-runout geological disaster chain. Thus, this paper suggested the main research directions of the site selection from five aspects: (1) regional geological evolution and engineering geological problems, (2) active fault and engineering safety risk, (3) complex in-situ stress field and engineering disaster risk, (4) engineering risk of regional geological disaster chain, and (5) theory and method of site selection in eastern Himalayan syntaxis. This paper provides ideas for improving the risk assessment and prevention methods of site selection of engineering projects.
-
图 1 喜马拉雅东构造结地质构造格架图(据丁林和钟大赉,2013;Searle,2013修改)
SS—桑构造结;AS—阿萨姆构造结;YLS—雅鲁藏布江缝合带;STDS—藏南拆离系;MCT—主中央断裂;MBT—主边界断裂;JLF—嘉黎断裂带;MTF—墨脱断裂;DMF—东久-米林断裂
Figure 1. Geological structures of the eastern Himalayan syntaxis (revised from Ding and Zhong, 2013; Searle, 2013)
SS-Siang syntaxis; AS-Assam syntaxis; YLS-Yarlung Zangbo suture zone; STDS-Southern Tibetan detachment system; MCT-Main Central Thrust; MBT-Main Boundary Thrust; JLF-Jiali fault; MTF-Motuo fault; DMF-Dongjiu-Milin fault
-
BEN-MENAHEM A, ABOODI E, SCHILD R, 1974. The source of the great Assam earthquake: an interplate wedge motion[J]. Physics of the Earth and Planetary Interiors, 9(4): 265-289. doi: 10.1016/0031-9201(74)90056-9 BIAN S, YU Z Q, GONG J F, et al., 2021. Spatiotemporal distribution and geodynamic mechanism of the nearly NS-trending rifts in the Tibetan Plateau[J]. Journal of Geomechanics, 27(2): 178-194. (in Chinese with English abstract) BOOTH A L, ZEITLER P K, KIDD W S F, et al., 2004. U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area[J]. American Journal of Science, 304(10): 889-929. doi: 10.2475/ajs.304.10.889 BURCHFIEL B C, CHEN Z L, HODGES K V, et al., 1992. The South Tibetan Detachment System, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt[J]. The Geological Society of America Special Paper, 269: 1-41. BURG J P, DAVY P, NIEVERGELT P, et al., 1997. Exhumation during crustal folding in the Namche-Barwa syntaxis[J]. Terra Nova, 9(2): 53-56. doi: 10.1111/j.1365-3121.1997.tb00001.x BURG J P, NIEVERGELT P, OBERLI F, et al., 1998. The Namche Barwa syntaxis: evidence for exhumation related to compressional crustal folding[J]. Journal of Asian Earth Sciences, 16(2-3): 239-252. doi: 10.1016/S0743-9547(98)00002-6 CHEN W P, MOLNAR P, 1977. Seismic moments of major earthquakes and the average rate of slip in central Asia[J]. Journal of Geophysical Research, 82(20): 2945-2969. doi: 10.1029/JB082i020p02945 CUI P, JIA Y, SU F H, et al., 2017. Natural hazards in Tibetan Plateau and key issue for feature research[J]. Bulletin of Chinese Academy of Sciences, 32(9): 985-992. (in Chinese with English abstract) DING L, ZHONG D L, PAN Y S, et al., 1995. Fission track evidence for rapid uplift of the eastern Himalayan tectonic node since Pliocene[J]. Chinese Science Bulletin, 40(16): 1497-1500. (in Chinese) doi: 10.1360/csb1995-40-16-1497 DING L, ZHONG D L, YIN A, et al., 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa)[J]. Earth and Planetary Science Letters, 192(3): 423-438. doi: 10.1016/S0012-821X(01)00463-0 DING L, ZHONG D L, 2013. The tectonic evolution of the eastern Himalaya syntaxis since the collision of the Indian and Eurasian plates[J]. Chinese Journal of Geology, 48(2): 317-333. (in Chinese with English abstract) GU D Z, 1965. Some problems of geological structure in construction of hydro-project[M]//GU D Z. Collected works of Gu Dezhen. Beijing: Science Press: 158-162. (in Chinese) GU D Z, 1979. Rock mass engineering geological mechanics[M]. Beijing: Science Press. (in Chinese) HAN S, WU Z H, GAO Y, et al., 2022. Surface rupture investigation of the 2022 Menyuan MS6.9 Earthquake, Qinghai, China: Implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk[J]. Journal of Geomechanics, 28(2): 155-168. (in Chinese with English abstract) HU H T, 1987. Analysis and evaluation of regional stability of Guangdong nuclear power station site planning[M]. Beijing: Archives Press: 94-113. (in Chinese) HU H T, YI M C, 1988. Discuss on crustal stability and reservoir induced seismicity of the Changjiang gorge area[J]. Bulletin of the Institute of Geomechanics Cags(11): 153-167. (in Chinese with English abstract) HU H T, YIN Y P, 1996. Theory and evaluation methods of regional crust stability "safety island"[J]. Earth Science Frontiers, 3(1-2): 57-68. (in Chinese with English abstract) HUANG R Q, WANG S T, ZHANG Z Y, et al., 2001. The dynamic process of earth's superficial crust and its engineering environmental effects[M]. Chengdu: Sichuan University Press. (in Chinese) LAN H X, ZHANG N, LI L P, et al., 2021. Risk analysis of major engineering geological hazards for Sichuan-Tibet railway in the phase of feasibility study[J]. Journal of Engineering Geology, 29(2): 326-341. (in Chinese with English abstract) LIU C Z, LV J T, TONG L Q, et al., 2019. Research on glacial/rock fall-landslide-debris flows in Sedongpu basin along Yarlung Zangbo River in Tibe[J]. Geology in China, 46(2): 219-234. (in Chinese with English abstract) LIU G C, 1979. Geomechanics and its application in hydrogeology and engineering geology[M]. Beijing: Geological Publishing House. (in Chinese) LIU G C, 1983. Regional stability in the three gorges region[M]//Engineering Geology Committee of Geological Society of China. Proceedings of the first national academic conference on engineering geology. Beijing: Science Press. (in Chinese) LIU G C, 1993. Regional stability engineering geology[M]. Changchun: Jilin University Press. (in Chinese) MENG W, GUO C B, ZHANG C Y, et al., 2017. In situ stress measurements and implications in the Lhasa Terrane, Tibetan Plateau[J]. Chinese Journal of Geophysics, 60(6): 2159-2171. (in Chinese with English abstract) PAN J W, LI H B, CHEVALIER M L, et al., 2022. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake, Qinghai Province, China[J]. Acta Geologica Sinica, 96(1): 215-231. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2022.01.018 PENG J B, MA R Y, LU Q Z, et al., 2004. Geological hazards effects of uplift of Qinghai-Tibet plateau[J]. Advances in Earth Science, 19(3): 457-466. (in Chinese with English abstract) http://www.researchgate.net/publication/305342469_Geological_hazards_effects_of_uplift_of_Qinghai-Tibet_Plateau PENG J B, CUI P, ZHUANG J Q, 2020. Challenges to engineering geology of Sichuan-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389. (in Chinese with English abstract) PENG M, JIANG M, CHEN Y L, et al., 2017. Crustal structure under the eastern Himalayan Syntaxis seismic array and its geodynamic implications derived from receiver functions[J]. Chinese Journal of Geophysics, 60(1): 70-85. (in Chinese with English abstract) SEARLE M P, 2013. Colliding continents: a geological exploration of the Himalaya, Karakoram, and Tibet[M]. Oxford: Oxford University Press. SEWARD D, BURG J P, 2008. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge: constraints from structural and thermochronological data[J]. Tectonophysics, 451(1-4): 282-289. doi: 10.1016/j.tecto.2007.11.057 SHUGAR D H, JACQUEMART M, SHEAN D, et al., 2021. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya[J]. Science, 373(6552): 300-306. doi: 10.1126/science.abh4455 TANG F T, YOU H C, LIANG X H, et al., 2019. A discussion on seismogenic fault of the Milin Ms6.9 earthquake, Tibet, and its tectonic attributes[J]. Acta Geoscientica Sinica, 40(1): 213-218. (in Chinese with English abstract) TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 TENG J W, SONG P H, LIU Y S, et al., 2019. Deep dynamics for the Yadong-Dongqiao-Huluhu rift in the Tibetan plateau[J]. Chinese Journal of Geophysics, 62(9): 3321-3339. (in Chinese with English abstract) XIE C, YANG X P, HUANG X N, et al., 2016. Geological evidences of late quaternary activity of Motuo fault in eastern Himalayan Syntaxis[J]. Seismology and Geology, 38(4): 1095-1106. (in Chinese with English abstract) XIE M, 2020. Remote sensing interpretation of engineering geology and route selection for Yining-Akesu railway based on multisource data[J]. Railway Investigation and Surveying, 46(5): 40-46. (in Chinese with English abstract) XIE Q M, WANG X F, XU S Z, et al., 2021. Study on thin shell theory-based method for prediction of surrounding rock deformation of tunnel-intersection opening section[J]. Water Resources and Hydropower Engineering, 52(2): 119-126. (in Chinese with English abstract) XU X W, CHEN W B, YU G H, et al., 2002. Characteristic features of the surface ruptures of the Hoh sai hu (Kunlunshan) earthquake (Ms8.1), northern Tibetan plateau, China[J]. Seismology and Geology, 24(1): 1-13. (in Chinese with English abstract) XU Z Q, CAI Z H, ZHANG Z M, et al., 2008. Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis[J]. Acta Petrologica Sinica, 24(7): 1463-1476. (in Chinese with English abstract) XUE S Y, XIE H, YUAN D Y, et al., 2022. Seismic disaster characteristics of the surface rupture of Menyuan Ms6.9 earthquake in 2022[J]. China Earthquake Engineering Journal, 44(2): 458-467. (in Chinese with English abstract) YIN A, HARRISON T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 YIN Y P, 2000. Rapid huge landslide and hazard reduction of Yigong River in the Bomi, Tibet[J]. Hydrogeology and Engineering Geology, 27(4): 8-11. (in Chinese with English abstract) YIN Y P, XING A G, 2012. Aerodynamic modeling of the Yigong gigantic rock slide-debris avalanche, Tibet, China[J]. Bulletin of Engineering Geology and the Environment, 71(1): 149-160. doi: 10.1007/s10064-011-0348-9 YIN Y P, ZHU S N, LI B, 2021a. High-position and long-runout geological hazards in the Qinghai-Tibet plateau[M]. Beijing: Science Press. (in Chinese) YIN Y P, LI B, ZHANG T T, et al., 2021b. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli, India[J]. The Chinese Journal of Geological Hazard and Control, 32(3): 1-8. (in Chinese with English abstract) ZHANG C Y, DU S H, HE M C, et al., 2022. Characteristics of in-situ stresses on the western margin of the eastern Himalayan syntaxis and its influence on stability of tunnel surrounding rock[J]. Chinese Journal of Rock Mechanics and Engineering, 41(5): 954-968. (in Chinese with English abstract) ZHANG J J, JI J Q, ZHONG D L, et al., 2003. Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process[J]. Science in China Series D: Earth Sciences, 47(2): 138-150. ZHANG P, QU Y M, GUO C B, et al., 2017. Analysis of in-situ stress measurement and real-time monitoring results in Nyching of Tibetan Plateau and its response to Nepal Ms8.1 earthquake[J]. Geoscience, 31(5): 900-910. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2017.05.003 ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1 ZHANG T T, YIN Y P, LI B, et al., 2022. Characteristics and dynamic analysis of the February 2021 long-runout disaster chain triggered by massive rock and ice avalanche at Chamoli, Indian Himalaya[J]. Journal of Rock Mechanics and Geotechnical Engineering, doi: 10.1016/j.jrmge.2022.04.003. ZHANG Y S, LI J Q, REN S S, et al., 2022. Development characteristics of clayey altered rocks in the Sichuan-Tibet traffic corridor and their promotion to large-scale landslides[J]. Earth Science, 47(6): 1945-1956. (in Chinese with English abstract) ZHENG L L, GENG Q R, OU C S, et al., 2003. Geochemical characteristics and geological significance of Boninite in Yaluzangbujiang ophiolitic melanges in Najiabawa[J]. Geological Bulletin of China, 22(11-12): 908-911. (in Chinese with English abstract) ZHENG L L, JIN Z M, PAN G T, 2004. Geological features and tectonic evolution in the Namjagbarwa area, eastern Himalayas[J]. Acta Geologica Sinica, 78(6): 744-751. (in Chinese with English abstract) ZHONG D L, DING L, 1996. The uplift process of the Tibetan plateau and its mechanism[J]. Science in China (Series D), 26(4): 289-295. (in Chinese) 卞爽, 于志泉, 龚俊峰, 等, 2021. 青藏高原近南北向裂谷的时空分布特征及动力学机制[J]. 地质力学学报, 27(2): 178-194. doi: 10.12090/j.issn.1006-6616.2021.27.02.018 崔鹏, 贾洋, 苏凤环, 等, 2017. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 中国科学院院刊, 32(9): 985-992. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201709014.htm 丁林, 钟大赉, 潘裕生, 等, 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报, 40(16): 1497-1500. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199516017.htm 丁林, 钟大赉, 2013. 印度与欧亚板块碰撞以来东喜马拉雅构造结的演化[J]. 地质科学, 48(2): 317-333. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201302003.htm 谷德振, 1965. 水利工程建设中的地质构造问题[M]//谷德振. 谷德振文集. 北京: 科学出版社: 158-162. 谷德振, 1979. 岩体工程地质力学基础[M]. 北京: 科学出版社. 韩帅, 吴中海, 高扬, 等, 2022. 2022年1月8日青海门源MS6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报, 28(2): 155-168. doi: 10.12090/j.issn.1006-6616.2022013 胡海涛, 1987. 广东核电站规划选址区域稳定性分析与评价[M]. 北京: 档案出版社: 94-113. 胡海涛, 易明初, 1988. 长江三峡地区地壳稳定性及水库诱发地震问题的探讨[J]. 中国地质科学院地质力学研究所所刊: 153-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX198800002.htm 胡海涛, 殷跃平, 1996. 区域地壳稳定性评价"安全岛"理论及方法[J]. 地学前缘, 3(1-2): 57-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY601.008.htm 黄润秋, 王士天, 张倬元, 等, 2001. 中国西南地壳浅表层动力学过程及其工程环境效应研究[M]. 成都: 四川大学出版社. 兰恒星, 张宁, 李郎平, 等, 2021. 川藏铁路可研阶段重大工程地质风险分析[J]. 工程地质学报, 29(2): 326-341. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202102004.htm 刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm 刘国昌, 1979. 地质力学及其在水文地质工程地质方面的应用[M]. 北京: 地质出版社. 刘国昌, 1983. 三峡地区的区域稳定性[M]//中国地质学会工程地质专业委员会. 全国首届工程地质学术会议论文选集. 北京: 科学出版社. 刘国昌, 1993. 区域稳定工程地质[M]. 长春: 吉林大学出版社. 孟文, 郭长宝, 张重远, 等, 2017. 青藏高原拉萨块体地应力测量及其意义[J]. 地球物理学报, 60(6): 2159-2171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201706012.htm 潘家伟, 李海兵, CHEVALIER M L, 等, 2022. 2022年青海门源MS6.9地震地表破裂带及发震构造研究[J]. 地质学报, 96(1): 215-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201015.htm 彭建兵, 马润勇, 卢全中, 等, 2004. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, 19(3): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200403017.htm 彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 39(12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm 彭淼, 姜枚, CHEN Y L, 等, 2017. 利用远震接收函数揭示的喜马拉雅东构造结台阵下方地壳结构及其动力学意义[J]. 地球物理学报, 60(1): 70-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201701008.htm 唐方头, 尤惠川, 梁小华, 等, 2019. 西藏米林6.9级地震发震断层判定及其构造属性讨论[J]. 地球学报, 40(1): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201901015.htm 滕吉文, 宋鹏汉, 刘有山, 等, 2019. 青藏高原"亚东—东巧—葫芦湖"大陆裂谷带形成的深层动力过程[J]. 地球物理学报, 62(9): 3321-3339. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201909009.htm 谢超, 杨晓平, 黄雄南, 等, 2016. 东喜马拉雅构造结墨脱断裂晚第四纪活动地质证据的发现[J]. 地震地质, 38(4): 1095-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201604023.htm 谢猛, 2020. 基于多源数据的伊阿铁路工程地质遥感解译及选线[J]. 铁道勘察, 46(5): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TLHC202005011.htm 谢全敏, 汪显凡, 徐善柱, 等, 2021. 隧道开孔段围岩变形的薄壳理论预测方法研究[J]. 水利水电技术(中英文), 52(2): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202102013.htm 徐锡伟, 陈文彬, 于贵华, 等, 2002. 2001年11月14日昆仑山库赛湖地震(Ms8.1)地表破裂带的基本特征[J]. 地震地质, 24(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200201000.htm 许志琴, 蔡志慧, 张泽明, 等, 2008. 喜马拉雅东构造结: 南迦巴瓦构造及组构运动学[J]. 岩石学报, 24(7): 1463-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200807005.htm 薛善余, 谢虹, 袁道阳, 等, 2022. 2022门源MS6.9地震地表破裂带震害特征调查[J]. 地震工程学报, 44(2): 458-467. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202202026.htm 殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质, 27(4): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200004002.htm 殷跃平, 朱赛楠, 李滨, 2021a. 青藏高原高位远程地质灾害[M]. 北京: 科学出版社. 殷跃平, 李滨, 张田田, 等, 2021b. 印度查莫利"2·7"冰岩山崩堵江溃决洪水灾害链研究[J]. 中国地质灾害与防治学报, 32(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202103001.htm 张重远, 杜世回, 何满潮, 等, 2022. 喜马拉雅东构造结西缘地应力特征及其对隧道围岩稳定性的影响[J]. 岩石力学与工程学报, 41(5): 954-968. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205008.htm 张进江, 季建清, 钟大赉, 等, 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨[J]. 中国科学(D辑), 33(4): 373-383. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304009.htm 张鹏, 曲亚明, 郭长宝, 等, 2017. 西藏林芝地应力测量监测与尼泊尔Ms8.1级强震远场响应分析[J]. 现代地质, 31(5): 900-910. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201705003.htm 张永双, 李金秋, 任三绍, 等, 2022. 川藏交通廊道黏土化蚀变岩发育特征及其对大型滑坡的促滑作用[J]. 地球科学, 47(6): 1945-1956. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202206004.htm 郑来林, 耿全如, 欧春生, 等, 2003. 藏东南迦巴瓦地区雅鲁藏布江蛇绿混杂岩中玻安岩的地球化学特征和地质意义[J]. 地质通报, 22(11-12): 908-911. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2003Z1012.htm 郑来林, 金振民, 潘桂棠, 2004. 东喜马拉雅南迦巴瓦地区区域地质特征及构造演化[J]. 地质学报, 78(6): 744-751. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200406004.htm 钟大赉, 丁林, 1996. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑), 26(4): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604000.htm