Volume 30 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
YANG Xiaoping, CHEN Jie, LI An, et al., 2024. Structural deformation characteristics of active anticline and their implications for seismogeological disaster effect under compression setting in the Late Cenozoic. Journal of Geomechanics, 30 (2): 225-241. DOI: 10.12090/j.issn.1006-6616.2023136
Citation: YANG Xiaoping, CHEN Jie, LI An, et al., 2024. Structural deformation characteristics of active anticline and their implications for seismogeological disaster effect under compression setting in the Late Cenozoic. Journal of Geomechanics, 30 (2): 225-241. DOI: 10.12090/j.issn.1006-6616.2023136

Structural deformation characteristics of active anticline and their implications for seismogeological disaster effect under compression setting in the Late Cenozoic

doi: 10.12090/j.issn.1006-6616.2023136
Funds:

the National Natural Science Foundation of China 42072249

the National Natural Science Foundation of China 41772221

the National Natural Science Foundation of China 40572126

the Second Comprehensive Scientific Investigation on the Tibet Plateau 2019QZKK0901

the Special Project of Basic Scientific Research of Institute of Geology, China Earthquake Administration IGGEA1704

the Special Project on Scientific Research of Earthquake Industry 200808013

More Information
  • Received: 2023-08-01
  • Revised: 2023-10-08
  • Accepted: 2024-01-22
  • Published: 2024-04-09
  •   Objective  Thrust faults and their associated folds are important structures of continental tectonic deformation, widely distributed at plate boundaries and within plates. The activity of these thrust faults can trigger severe seismic disasters, such as the 1999 Chi-Chi earthquake in Taiwan and the 2008 Wenchuan earthquake. However, research on surface ruptures and associated disasters caused by thrust faulting is relatively limited, mainly due to the complexity of their fault propagation processes. Studying thrust faults and their associated folds could enhance the capability of seismic hazard risk assessment and better predict earthquakes and potential secondary disasters.  Methods  This paper first introduces the meanings of fold-related faults and fold scarps and explains the impacts of surface uplift and lateral extension deformations on topography. Taking the Tian Shan active fold zone as an example, the paper focuses on analyzing the structural characteristics and landform deformation patterns of the Hejing thrust-and-fold belt in the northern margin of the Yanchi Basin and the Mingyaole anticline in the southern piedmont of the Tian Shan. It also discusses various types of structures, such as thrust faults, fold-related faults (flexural faults, flexural slip faults, and conjugate shear faults), and their effects on landforms. Based on this, the paper explores the relationship between the growth process of active folds and the formation of seismic geological disasters.  Results and Conclusion  It is believed that in a compressive tectonic environment, the growth of active folds and the formation of fault-related folds cause building displacement, tilting, and damage, thereby generating geological disasters. In particular, it emphasizes that the tilting of the ground on both sides and the footwall of active anticlines during the process of crustal shortening, vertical uplift, and lateral expansion poses a threat to the safe operation of major engineering structures. Simultaneously, the bending deformation caused by regional crustal shortening presents potential seismic risks and triggers geological hazards for significant linear engineering projects spanning active anticlines, warranting attention.

     

  • loading
  • BENSON P M, VINCIGUERRA S, MEREDITH P G, et al., 2008. Laboratory simulation of volcano seismicity[J]. Science, 322(5899): 249-252. doi: 10.1126/science.1161927
    BURBANK D W, ANDERSON R S, 2011. Tectonic geomorphology[M]. 2nd ed. Blackwell Science: 105-107.
    CHEN J, SCHARER K M, BURBANK D W, et al., 2005a. Kinematic models of fluvial terraces over active fault-related folds: constraints on the growth mechanism and kinematics[J]. Seismology and Geology, 27(4): 513-529. (in Chinese with English abstract)
    CHEN J, SCHARER K M, BURBANK D W, et al., 2005b. Quaternary detachment folding of the Mingyaole anticline, southwestern Tian Shan[J]. Seismology and Geology, 27(4): 530-547. (in Chinese with English abstract)
    CHEN Q Y, FU B H, SHI P L, et al., 2022. Surface deformation associated with the 22 august 1902 Mw 7.7 atushi earthquake in the southwestern Tian Shan, revealed from multiple remote sensing data[J]. Remote Sensing, 14(7): 1663. doi: 10.3390/rs14071663
    CHEN W S, LEE K J, LEE L S, et al., 2007. Paleoseismic evidence for coseismic growth-fold in the 1999 Chichi earthquake and earlier earthquakes, central Taiwan [J]. Journal of Asian Earth Sciences, 31(3): 204-213. doi: 10.1016/j.jseaes.2006.07.027
    CLARK D, MCPHERSON A, ALLEN T, et al., 2014. Coseismic surface deformation caused by the 23 March 2012 Mw 5.4 Ernabella (Pukatja) earthquake, central Australia: implications for fault scaling relations in cratonic settings[J]. Bulletin of the Seismological Society of America, 104(1): 24-39. doi: 10.1785/0120120361
    DENG H L, ZHANG C H, LI H L, et al., 2009. Fold-accommodation faults and their geological significance [J]. Progress in Natural Science, 19(3): 285-296. (in Chinese) doi: 10.1016/j.pnsc.2008.07.009
    DENG Q D, ZHENG P Z, XU X W, et al., 1996. Paleoseismology of the northern piedmont of Tianshan Mountains, Northwestern China [J]. Journal of Geophysical Research: Solid Earth, 101(B3): 5895-5920. doi: 10.1029/95JB02739
    DENG Q D, FENG X Y, ZHANG P Z, et al., 2000. Active tectonics in Tianshan region[M]. Beijing: Seismological Press: 1-415. (in Chinese)
    DI N, LI C L, LI T, et al., 2023. The 2021 Mw 5.2 Baicheng earthquake: implications for the hazards of extremely shallow earthquakes [J]. Seismological Research Letters, 94(4): 1775-1790.
    FENG X Y, 1997. The paleoearthquakes in Xinjiang region, China[M]. Urumqi: Xinjiang Science and Technology Health Publishing House: 217-222. (in Chinese)
    GUO C B, ZHANG Y S, WANG T, et al., 2017. Discussion on geological hazards and major engineering geological problems in the middle part of the North-south active tectonic zone, China[J]. Journal of Geomechanics, 23(5): 707-722. (in Chinese with English abstract)
    GUO S M, TAPPONNIER P, CHEN Z T, et al., 1990. Characteristics of surface rupture of EL ASNAM (ALGERIA) earthquake and the study of paleoseismic events[J]. Acta Seismologica Sinica, 12(4): 389-398. (in Chinese with English abstract)
    HILL M L, 1984. Earthquakes and folding, Coalinga, California[J]. Geology, 12(12): 711-712. doi: 10.1130/0091-7613(1984)12<711:EAFCC>2.0.CO;2
    HUANG W L, 2015. Crustal shortening rate across the Yanqi basin, Tianshan during Mid-late Quaternary[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
    HUANG W L, YANG X P, LI A, et al., 2014. Climatically controlled formation of river terraces in a tectonically active region along the southern piedmont of the Tian Shan, NW China[J]. Geomorphology, 220: 15-29. doi: 10.1016/j.geomorph.2014.05.024
    HUBERT-FERRARI A, SUPPE J, GONZALEZ-MIERES R, et al., 2007. Mechanisms of active folding of the landscape (southern Tian Shan, China)[J]. Journal of Geophysical Research: Solid Earth, 112(B3): B03S09.
    JIA L Y, MA X M, JING J J, et al., 2023. Dynamic variation characteristics of in-situ stress in the 1605 Qiongshan M 7½ earthquake area and its implications to the Dongzhaigang subsidence, northeastern Hainan Island, China[J]. Journal of Geomechanics, 29(3): 339-354(in Chinese with English abstract)
    KELLER E A, GURROLA L, TIERNEY T E, 1999. Geomorphic criteria to determine direction of lateral propagation of reverse faulting and folding[J]. Geology, 27(6): 515-518. doi: 10.1130/0091-7613(1999)027<0515:GCTDDO>2.3.CO;2
    KING G C P, STEIN R, 1983. Surface folding, river terrace deformation rate and earthquake repeat time in a reverse faulting environment: the Coalinga, California, earthquake of May 1983[M]//BENNETT J H, SHERBURNE R W. The 1983 Coalinga, California, earthquakes. Sacramento: California Division of Mines and Geology Special Publication: 165-176.
    LI A, 2010. Tectonic movement and paleoearthquakes on the Hejing reverse fault-fold zone in the northern margin of the Yanqi basin during the Late Quaternary [D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
    LI A, YANG X P, HUANG W L, et al., 2011. Active faults of the Haermodun anticline and their formation mechanism in the north margin of the Yanqi basin [J]. Seismology and Geology, 33(4): 789-803. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2011.04.005
    LI S Q, ZHANG L, YANG X P, et al., 2016. Active faults and their formation mechanism in the east segment of Qiulitage anticline belt, Kuqa depression [J]. Seismology and Geology, 38(2): 223-239. (in Chinese with English abstract)
    LI T, CHEN J, XIAO W P, et al., 2011. Using deformation terraces to confine the shortening, uplift and lateral propagation of the Mushi anticline, northern margin of the Pamir[J]. Seismology and Geology, 33(2): 308-322. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2011.02.005
    LI T, CHEN J, XIAO W P, 2013. Late-quaternary folding of the Mingyaole anticline southwestern tip, Pamir-Tianshan convergent zone[J]. Seismology and Geology, 35(2): 234-246. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2013.02.004
    LI T, CHEN J, XIAO W P, 2014. Deformation characteristics and kinematics of active detachment fold scarp: a case study from the Mingyaole anticline, Pamir-southern Tianshan foreland[J]. Seismology and Geology, 36(3): 677-691. (in Chinese with English abstract)
    LI T, CHEN J, THOMPSON J A, et al., 2015a. Hinge-migrated fold-scarp model based on an analysis of bed geometry: a study from the Mingyaole anticline, southern foreland of Chinese Tian Shan[J]. Journal of Geophysical Research: Solid Earth, 120(9): 6592-6613. doi: 10.1002/2015JB012102
    LI T, CHEN J, THOMPSON J A, et al., 2015b. Active flexural-slip faulting: a study from the Pamir-Tian Shan convergent zone, NW China[J]. Journal of Geophysical Research: Solid Earth, 120(6): 4359-4378. doi: 10.1002/2014JB011632
    LI T, CHEN J, THOMPSON J A, et al., 2017. Active flexural-slip faulting: controls exerted by stratigraphy, geometry, and fold kinematics[J]. Journal of Geophysical Research: Solid Earth, 122(10): 8538-8565. doi: 10.1002/2017JB013966
    LI T, CHEN J, THOMPSON J A, et al., 2018. Active bending-moment faulting: geomorphic expression, controlling conditions, accommodation of fold deformation[J]. Tectonics, 37(8): 2278-2306. doi: 10.1029/2018TC004982
    LI Y H, 2022. The active out-of-sequence thrusting and folding of the southern Junggar structural wedges[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)
    LI Z G, CHEN W, JIA D, et al., 2020. The effects of fault geometry and kinematic parameters on 3D fold morphology: insights from 3D geometric models and comparison with the Dushanzi anticline, China[J]. Tectonics, 39(2): e2019TC005713.
    LU H F, WANG S L, SUPPE J, et al., 2002. Quaternary folding in the south piedmont of central segment of Tianshan Mountains[J]. Chinese Science Bulletin, 47(22): 1907-1911. doi: 10.1360/02tb9417
    MCCLAY K R, 1992. Thrust tectonics[M]. London: Chapman & Hall: 71-104.
    MITRA S, 2002. Fold-accommodation faults[J]. AAPG Bulletin, 86(4): 671-693.
    MORLEY C K, 1988. Out-of-sequence thrusts[J]. Tectonics, 7(3): 539-561. doi: 10.1029/TC007i003p00539
    NAMSON J S, DAVIS T L, 1988. Seismically active fold and thrust belt in the San Joaquin Valley, central California[J]. GSA Bulletin, 100(2): 257-273. doi: 10.1130/0016-7606(1988)100<0257:SAFATB>2.3.CO;2
    PENG F N, YE Y C, 2004. Seismogenic fault of the 1999 Chi-Chi earthquake in Taiwan province and the features of earthquake damages[J]. Seismology and Geology, 26(4): 576-585. (in Chinese with English abstract)
    PHILIP H, MEGHRAOUI M, 1983. Structural analysis and interpretation of the surface deformations of the El ASNAM earthquake of October 10, 1980[J]. Tectonics, 2(1): 17-49. doi: 10.1029/TC002i001p00017
    POBLET J, MCCLAY K, STORTI F, et al., 1997. Geometries of syntectonic sediments associated with single-layer detachment folds[J]. Journal of Structural Geology, 19(3-4): 369-381. doi: 10.1016/S0191-8141(96)00113-7
    RAMSEY L A, WALKER R T, JACKSON J, 2008. Fold evolution and drainage development in the Zagros mountains of Fars province, SE Iran[J]. Basin Research, 20(1): 23-48. doi: 10.1111/j.1365-2117.2007.00342.x
    RAN Y K, WANG H, LI Y B, et al., 2012. Key techniques and several cases analysis in paleoseismic studies in China' s mainland (1): trenching sites, layouts and paleoseismic indicators on active strike-slip faults[J]. Seismology and Geology, 34(2): 197-210. (in Chinese with English abstract)
    RUBIN C M, 1996. Systematic underestimation of earthquake magnitudes from large intracontinental reverse faults: historical ruptures break across segment boundaries[J]. Geology, 24(11): 989-992. doi: 10.1130/0091-7613(1996)024<0989:SUOEMF>2.3.CO;2
    SHI L, ZHENG W J, ZHANG Y, et al., 2022. Correlation between active fault scarp evolution and strong earthquake activity based on high resolution geomorphic data[J]. Earthquake Research in China, 38(3): 472-485. (in Chinese with English abstract)
    SONG H P, SHEN J, XIANG Z Y, et al., 2009. Active fault surveying and seismic risk assessment in Urumqi[M]. Beijing: Seismological Press: 168-185. (in Chinese)
    SUPPE J, 1983. Geometry and kinematics of fault-bend folding [J]. American Journal of Science, 283: 684-721.
    SUPPE J, MEDWEDEFF D A. 1990. Geometry and kinematics of fault propagation folding[J]. Eclogacgeol Helv, 83 (3): 409-454.
    WALLACE R E, 1984. Faulting related to the 1915 earthquakes in pleasant Valley, Nevada[R]. Washington: United States Government Printing Office.
    WANG Y Q, FENG W P, ZHANG P Z, 2022. Present deformation of ~90° intersecting conjugate faults and mechanical implication to regional tectonics: a case study of 2019 MW≥6.4 philippines earthquake sequence[J]. Seismology and Geology, 44(2): 313-332. (in Chinese with English abstract)
    XU X W, WEN X Z, YE J Q, et al., 2008. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology, 30(3): 597-629. (in Chinese with English abstract)
    YAN Y, 2023. The tunnel damage effects and implications of the coseismic rupture of the Menyuan MS 6.9 Earthquake in Qinghai, China[J]. Journal of Geomechanics, 29(6): 869-878. (in Chinese with English abstract)
    YANG X P, WU G, CHEN L C, et al., 2016. The seismogenic structure of the April 25, 2015 MW7.8 Nepal earthquake in the southern margin of Qinghai-Tibetan Plateau[J]. Chinese Journal of Geophysics, 59(7): 2528-2538. (in Chinese with English abstract)
    YANG Z H, ZHANG Y S, GUO C B, et al., 2017. Landslide hazard rapid assessment in the MS8.1 nepal earthquake-impacted area, based on newmark model[J]. Journal of Geomechanics, 23(1): 115-124. (in Chinese with English abstract)
    YAO Y, WEN S Y, YANG L, et al., 2022. A shallow and left-lateral rupture event of the 2021 Mw 5.3 Baicheng earthquake: Implications for the diffuse deformation of southern Tianshan[J]. Earth and Space Science, 9(3): e2021EA001995.
    YEATS R S, CLARK M N, KELLER E A, et al., 1981. Active fault hazard in southern California: ground rupture versus seismic shaking[J]. GSA Bulletin, 92(4): 189-196.
    YEATS R S, 1986. Active faults related to folding[M]//WALLACE R E. Active tectonics: impact on society. Washington: National Academy Press: 63-79.
    YEATS R S, PRENTICE C S, 1996. Introduction to special section: paleoseismology[J]. Journal of Geophysical Research: Solid Earth, 101(B3): 5847-5853.
    ZENG Z X, 1991. An experimental research on conjugate shear angles[J]. Geological Science and Technology Information, 10(4): 45-49. (in Chinese with English abstract)
    ZHANG L, YANG X P, LI S Q, et al., 2020. Study on paleo-seismic events in trenches of the eastern Qiulitage anticlinal belt[J]. Seismology and Geology, 42(5): 1039-1057. (in Chinese with English abstract)
    ZHANG P Z, DENG Q D, XU X W, et al., 1994. Blind thrust, folding earthquake, and the 1906 Manas earthquake, Xinjiang[J]. Seismology and Geology, 16(3): 193-204. (in Chinese with English abstract)
    陈杰, SCHARER K M, BURBANK D W, 等, 2005a. 利用河流阶地限定活动褶皱的类型和生长机制: 运动学模型[J]. 地震地质, 27(4): 513-529. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200504000.htm
    陈杰, SCHARER K M, BURBANK D W, 等, 2005b. 西南天山明尧勒背斜的第四纪滑脱褶皱作用[J]. 地震地质, 27(4): 530-547. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200504001.htm
    邓洪菱, 张长厚, 李海龙, 等, 2009. 褶皱相关断裂构造及其地质意义[J]. 自然科学进展, 19(3): 285-296. doi: 10.3321/j.issn:1002-008X.2009.03.007
    邓起东, 冯先岳, 张培震, 等, 2000. 天山活动构造[M]. 北京: 地震出版社: 1-415.
    冯先岳, 1997. 新疆古地震[M]. 乌鲁木齐: 新疆科技卫生出版社: 217-222.
    郭长宝, 张永双, 王涛, 等, 2017. 南北活动构造带中段地质灾害与重大工程地质问题概论[J]. 地质力学学报, 23(5): 707-722. doi: 10.3969/j.issn.1006-6616.2017.05.008
    虢顺民, TAPPONNIER P, 陈志泰, 等, 1990. 阿尔及利亚阿斯南地震地表破裂特征及古地震事件研究[J]. 地震学报, 12(4): 389-398. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB199004005.htm
    黄伟亮, 2015. 天山内部焉耆盆地中晚第四纪地壳缩短速率研究[D]. 北京: 中国地震局地质研究所.
    贾丽云, 马秀敏, 姜景捷, 等, 2023.1605年琼山M 7½级地震区现今地应力动态变化特征及对东寨港沉陷的指示意义[J]. 地质力学学报, 29(3): 339-354. doi: 10.12090/j.issn.1006-6616.20232904
    李安, 2010. 焉耆盆地北缘和静逆断裂-褶皱带晚第四纪构造活动及古地震[D]. 北京: 中国地震局地质研究所.
    李安, 杨晓平, 黄伟亮, 等, 2011. 焉耆盆地北缘哈尔莫敦背斜区的活动断裂及其形成机制[J]. 地震地质, 33(4): 789-803. doi: 10.3969/j.issn.0253-4967.2011.04.005
    李胜强, 张玲, 杨晓平, 等, 2016. 库车坳陷东部秋里塔格背斜带的活动断层及其形成机制[J]. 地震地质, 38(2): 223-239. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201602001.htm
    李涛, 陈杰, 肖伟鹏, 等, 2011. 利用变形河流阶地限定帕米尔北缘木什背斜的缩短、隆升和侧向扩展[J]. 地震地质, 33(2): 308-322. doi: 10.3969/j.issn.0253-4967.2011.02.005
    李涛, 陈杰, 肖伟鹏, 2013. 帕米尔—天山对冲带明尧勒背斜西南倾伏端晚第四纪褶皱变形[J]. 地震地质, 35(2): 234-246. doi: 10.3969/j.issn.0253-4967.2013.02.004
    李涛, 陈杰, 肖伟鹏, 2014. 滑脱褶皱陡坎的变形特征和运动学模型: 以帕米尔-南天山前陆地区明尧勒背斜为例[J]. 地震地质, 36(3): 677-691. doi: 10.3969/j.issn.0253-4967.2014.03.011
    李跃华, 2022. 准噶尔盆地南缘活动挤压构造楔的无序逆断与褶皱作用[D]. 北京: 中国地震局地质研究所.
    卢华复, 王胜利, SUPPE J, 等, 2002. 天山中段南麓的第四纪褶皱作用[J]. 科学通报, 47(21): 1675-1679. doi: 10.3321/j.issn:0023-074X.2002.21.015
    彭阜南, 叶银灿, 2004. 台湾9.21集集地震考察兼论强震发震断层[J]. 地震地质, 26(4): 576-585. doi: 10.3969/j.issn.0253-4967.2004.04.004
    冉勇康, 王虎, 李彦宝, 等, 2012. 中国大陆古地震研究的关键技术与案例解析(1): 走滑活动断裂的探槽地点、布设与事件识别标志[J]. 地震地质, 34(2): 197-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201502001.htm
    石霖, 郑文俊, 张岩, 等, 2022. 基于高分辨率地形数据的断层陡坎形态演化与强震活动关系研究[J]. 中国地震, 38(3): 472-485. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD202203009.htm
    宋和平, 沈军, 向志勇, 等, 2009. 乌鲁木齐市活断层探测与地震危险性评价[M]. 北京: 地震出版社: 168-185.
    王雨晴, 冯万鹏, 张培震, 2022. 交角约90°共轭断裂的现今形变及对构造应力场的指示意义: 以2019年MW≥6.4菲律宾地震序列为例[J]. 地震地质, 44(2): 313-332. doi: 10.3969/j.issn.0253-4967.2022.02.003
    徐锡伟, 闻学泽, 叶建青, 等, 2008. 汶川MS8.0地震地表破裂带及其发震构造[J]. 地震地质, 30(3): 597-629. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200803003.htm
    阎渊, 2023. 青海门源MS 6.9地震同震破裂的隧道破坏效应与启示[J]. 地质力学学报, 29(6): 869-878. doi: 10.12090/j.issn.1006-6616.2023027
    杨晓平, 吴果, 陈立春, 等, 2016. 青藏高原南缘2015年尼泊尔MW7.8地震发震构造[J]. 地球物理学报, 59(7): 2528-2538. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201607018.htm
    杨志华, 张永双, 郭长宝, 等, 2017. 基于Newmark模型的尼泊尔MS8.1级地震滑坡危险性快速评估[J]. 地质力学学报, 23(1): 115-124. https://journal.geomech.ac.cn/article/id/1ec137bf-593c-4c8a-8ec8-fe021b4c52d7
    曾佐勋, 1991. 共轭剪切角的实验研究[J]. 地质科技情报, 10(4): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ199104014.htm
    张玲, 杨晓平, 李胜强, 等, 2020. 秋里塔格褶皱带东段探槽的古地震事件[J]. 地震地质, 42(5): 1039-1057. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202005002.htm
    张培震, 邓起东, 徐锡伟, 等, 1994. 盲断裂、褶皱地震与新疆1906年玛纳斯地震[J]. 地震地质, 16(3): 193-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ403.000.htm
  • 加载中

Catalog

    Figures(9)

    Article Metrics

    Article views (73) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return