Volume 30 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
YANG Yongzhong, LI Zhanfei, REN Junjie, et al., 2024. Control of bedrock geology on active structural deformation revealed by changes in geomorphic parameters: A case study of the Fodongmiao-Hongyazi Frontal Thrust, NE Tibet. Journal of Geomechanics, 30 (2): 348-362. DOI: 10.12090/j.issn.1006-6616.2023129
Citation: YANG Yongzhong, LI Zhanfei, REN Junjie, et al., 2024. Control of bedrock geology on active structural deformation revealed by changes in geomorphic parameters: A case study of the Fodongmiao-Hongyazi Frontal Thrust, NE Tibet. Journal of Geomechanics, 30 (2): 348-362. DOI: 10.12090/j.issn.1006-6616.2023129

Control of bedrock geology on active structural deformation revealed by changes in geomorphic parameters: A case study of the Fodongmiao-Hongyazi Frontal Thrust, NE Tibet

doi: 10.12090/j.issn.1006-6616.2023129
Funds:

the Research Fund of National Institute of Natural Hazards, Ministry of Emergency Management of China ZDJ2022-01

the National Natural Science Foundation of China U1839204

the National Natural Science Foundation of China 41941016

the Key Program of the Chinese Academy of Sciences KFZD-SW-422

More Information
  • Received: 2023-12-01
  • Revised: 2024-01-15
  • Accepted: 2024-01-15
  • Published: 2024-04-09
  •   Objective  Widely distributed active faults are natural carriers that produce surface-rupture events; multidisciplinary observations have revealed that geometric changes in active faults significantly influence surface-rupture development. However, previous studies on the interaction between the geometric characteristics of active faults and the underlying rock geology have been relatively limited and only confined to observing high-temperature and high-pressure experiments.  Methods  With the development of high-resolution geographic technology and quantitative research methods for active faults, it is now possible to finely characterize the geometric structure of large-scale faults and recognize multiparameter displaced landform characteristics. In this study, we utilized high-resolution topographic data (0.5 m) from the Fodongmiao-Hongyazi Frontal thrust (FFT) on the northeastern margin of the Tibetan Plateau, spanning approximately 120 km in length to identify and compare the parameters and characteristics of the faulted landform with the underlying bedrock geology.  Result  The research results indicate that the geometric characteristics of the fault are segmented and synchronized with the geological background of the bedrock. The shallow geometric structures of the eastern and western sections of the FFT are relatively simple and continuous, and the changes in parameters such as the strike, roughness, and deformation zone width of the fault are relatively small. The fault's geometric structure was rougher in the middle section of the fault, where Silurian granite is located, and the shallow deformation zone was broader than that in the eastern and western segments. The step-width distribution also varied more drastically along the fault.  Conclusion  This study revealed a significant correspondence between faulted landform parameter changes, the boundary of fault segments, and zones of vertical separation attenuation. Additionally, this study suggests that bedrock geology may exert substantial control over the shallow structural deformation of thrust faults.  Significance  The potential impact of the underlying geology should be considered for thrust faults and when analyzing seismic hazards related to active faults.

     

  • loading
  • BARKA A A, KADINSKY-CADE K, 1988. Strike-slip fault geometry in Turkey and its influence on earthquake activity[J]. Tectonics, 7(3): 663-684. doi: 10.1029/TC007i003p00663
    BASTESEN E, BRAATHEN A, 2010. Extensional faults in fine grained carbonates-analysis of fault core lithology and thickness-displacement relationships[J]. Journal of Structural Geology, 32(11): 1609-1628. doi: 10.1016/j.jsg.2010.09.008
    BEDFORD J D, FAULKNER D R, LAPUSTA N, 2022. Fault rock heterogeneity can produce fault weakness and reduce fault stability[J]. Nature Communications, 13(1): 326. doi: 10.1038/s41467-022-27998-2
    CARPENTER B M, MARONE C, SAFFER D M, 2011. Weakness of the San Andreas Fault revealed by samples from the active fault zone[J]. Nature Geoscience, 4(4): 251-254. doi: 10.1038/ngeo1089
    CHEN B L, LIU J S, ZHANG Y S, et al., 2010. Estimation of major earthquake cycle and future tendency in Hexi corridor and its adjacent area, NW China[J]. Journal of Geomechanics, 16(2): 159-175. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2010.02.006
    CHEN T, LIU-ZENG J, SHAO Y X, et al., 2018. Geomorphic offsets along the creeping Laohu Shan section of the Haiyuan fault, northern Tibetan Plateau[J]. Geosphere, 14(3): 1165-1186. doi: 10.1130/GES01561.1
    CHOI J H, KLINGER Y, FERRY M, et al., 2018. Geologic inheritance and earthquake rupture processes: The 1905 M ≥ 8 Tsetserleg-Bulnay strike-slip earthquake sequence, Mongolia[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1925-1953. doi: 10.1002/2017JB013962
    COLLETTINI C, NIEMEIJER A, VITI C, et al., 2009. Fault zone fabric and fault weakness[J]. Nature, 462(7275): 907-910. doi: 10.1038/nature08585
    DUAN B C, OGLESBY D D, 2006. Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike-slip faults[J]. Journal of Geophysical Research: Solid Earth, 111(B5): B05309.
    GU G X, 1983. Catalogue of earthquakes in China (1831 BC-1969 AD)[M]. Beijing: Science Press. (in Chinese)
    HADDON E K, AMOS C B, ZIELKE O, et al., 2016. Surface slip during large Owens Valley earthquakes[J]. Geochemistry, Geophysics, Geosystems, 17(6): 2239-2269. doi: 10.1002/2015GC006033
    HETZEL R, HAMPEL A, GEBBEKEN P, et al., 2019. A constant slip rate for the western Qilian Shan frontal thrust during the last 200 ka consistent with GPS-derived and geological shortening rates[J]. Earth and Planetary Science Letters, 509: 100-113. doi: 10.1016/j.epsl.2018.12.032
    HU X F, PAN B T, KIRBY E, et al., 2015. Rates and kinematics of active shortening along the eastern Qilian Shan, China, inferred from deformed fluvial terraces[J]. Tectonics, 34(12): 2478-2493. doi: 10.1002/2015TC003978
    HUANG X N, YANG H B, YANG X P, et al., 2021. Holocene paleoeseismology of the Fodongmiao-Hongyazi Fault along the Northern Tibetan margin (Western China) and implication to intraplate earthquake rupturing pattern[J]. Tectonophysics, 808: 228812. doi: 10.1016/j.tecto.2021.228812
    Institute of Geology, State Seismological Bureau, Lanzhou Institute of Seismology, State Seismological Bureau. 1993. The Qilian Mountain-Hexi Corridor Active Fault System [M]. Seismological Press, Beijing: 19—228 (in Chinese)
    KANG W J, XU X W, OSKIN M E, et al., 2020. Characteristic slip distribution and earthquake recurrence along the eastern Altyn Tagh fault revealed by high-resolution topographic data[J]. Geosphere, 16(1): 392-406. doi: 10.1130/GES02116.1
    KLINGER Y, ETCHEBES M, TAPPONNIER P, et al., 2011. Characteristic slip for five great earthquakes along the Fuyun fault in China[J]. Nature Geoscience, 4(6): 389-392. doi: 10.1038/ngeo1158
    LI H Q, YUAN D Y, SU Q, et al., 2023. Geomorphic features of the Menyuan basin in the Qilian Mountains and its tectonic significance[J]. Journal of Geomechanics, 29(6): 824-841. (in Chinese with English Abstract)
    LI Z F, XU X W, TAPPONNIER P, et al., 2021. Post-20 ka earthquake scarps along NE-Tibet's Qilian Shan frontal Thrust: Multi-millennial return, ~characteristic co-seismic slip, and geological rupture control[J]. Journal of Geophysical Research: Solid Earth, 126(12): e2021JB021889. doi: 10.1029/2021JB021889
    LIU X W, YUAN D Y, HE W G, 2014. Preliminary study of palaeo-earthquakes on the Fodongmiao-Hongyazi fault in the north margin of Qilian mountain [J]. Technology for Earthquake Disaster Prevention, 9(3): 411-419. (in Chinese with English Abstract)
    LIU X W, YUAN D Y, SU Q, 2019. Late Pleistocene slip rate on a blind thrust in the western Qilian Shan, NW China[J]. Geomorphology, 345: 106841. doi: 10.1016/j.geomorph.2019.106841
    LIU X W, YUAN D Y, SHAO Y X, et al., 2022. Re-evaluation of surface ruptures produced by the 1609 M 7.3 Hongyazi earthquake in the northern Qilian Shan, China[J]. Arabian Journal of Geosciences, 15(6): 542. doi: 10.1007/s12517-021-08633-8
    LIU-ZENG J, YAO W Q, LIU X L, et al., 2022. High-resolution structure-from-motion models covering 160 km-long surface ruptures of the 2021 MW 7.4 Madoiearthquake in northern Qinghai-Tibetan Plateau[J]. Earthquake Research Advances, 2(2): 100140. doi: 10.1016/j.eqrea.2022.100140
    MANIGHETTI I, KING G C P, GAUDEMER Y, et al., 2001. Slip accumulation and lateral propagation of active normal faults in Afar[J]. Journal of Geophysical Research: Solid Earth, 106(B7): 13667-13696. doi: 10.1029/2000JB900471
    MANIGHETTI I, MERCIER A, DE BARROS L, 2021. Fault trace corrugation and segmentation as a measure of fault structural maturity[J]. Geophysical Research Letters, 48(20): e2021GL095372. doi: 10.1029/2021GL095372
    MATTÉO L, MANIGHETTI I, TARABALKA Y, et al., 2021. Automatic fault mapping in remote optical images and topographic data with deep learning[J]. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB021269. doi: 10.1029/2020JB021269
    PERRIN C, MANIGHETTI I, AMPUERO J P, et al., 2016. Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth[J]. Journal of Geophysical Research: Solid Earth, 121(5): 3666-3685. doi: 10.1002/2015JB012671
    REN J J, XU X W, ZHANG G W, et al., 2022. Coseismic surface ruptures, slip distribution, and 3D seismogenic fault for the 2021 Mw 7.3 Maduo earthquake, central Tibetan Plateau, and its tectonic implications[J]. Tectonophysics, 827: 229275. doi: 10.1016/j.tecto.2022.229275
    REN Z K, ZHANG Z Q, CHEN T, et al., 2016. Clustering of offsets on the Haiyuan fault and their relationship to paleoearthquakes[J]. GSA Bulletin, 128(1-2): 3-18.
    SCHOLZ C H, ENGELDER J T, 1976. The role of asperity indentation and ploughing in rock friction—I: Asperity creep and stick-slip[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 13(5): 149-154.
    SIBSON R H, 1977. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 133(3): 191-213. doi: 10.1144/gsjgs.133.3.0191
    STEWART N, GAUDEMER Y, MANIGHETTI I, et al., 2018. "3D_Fault_Offsets, " a Matlab code to automatically measure lateral and vertical fault offsets in topographic data: application to San Andreas, Owens Valley, and Hope faults[J]. Journal of Geophysical Research: Solid Earth, 123(1): 815-835. doi: 10.1002/2017JB014863
    TAPPONNIER P, MEYER B, AVOUAC J P, et al., 1990. Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet[J]. Earth and Planetary Science Letters, 97(3-4): 382-383, 387-403. doi: 10.1016/0012-821X(90)90053-Z
    WESNOUSKY S G, 2008. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture[J]. Bulletin of the Seismological Society of America, 98(4): 1609-1632. doi: 10.1785/0120070111
    XIONG J G, LI Y L, ZHONG Y Z, et al., 2017. Latest Pleistocene to Holocene thrusting recorded by a flight of strath terraces in the eastern Qilian Shan, NE Tibetan Plateau[J]. Tectonics, 36(12): 2973-2986. doi: 10.1002/2017TC004648
    XU X W, WEN X Z, YU G H, et al., 2009. Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China[J]. Geology, 37(6): 515-518. doi: 10.1130/G25462A.1
    XU X W, WU X Y, YU G H, et al., 2017. Seismo-geological signatures for identifying M≥7.0 earthquake risk areas and their premilimary application in China's mainland[J]. Seismology and Geology, 39(2): 219-275. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2017.02.001
    XU X W, YEATS R S, YU G H, 2010. Five short historical earthquake surface ruptures near the Silk Road, Gansu Province, China[J]. Bulletin of the Seismological Society of America, 100(2): 541-561. doi: 10.1785/0120080282
    YANG H B, YANG X P, HUANG X N, 2017. A preliminary study about slip rate of middle segment of the northern Qilian thrust fault zone since late quaternary[J]. Seismology and Geology, 39(1): 20-42. (in Chinese with English abstract)
    YANG H B, YANG X P, HUANG X N, et al., 2018. New constraints on slip rates of the Fodongmiao-Hongyazi fault in the Northern Qilian Shan, NE Tibet, from the 10Be exposure dating of offset terraces[J]. Journal of Asian Earth Sciences, 151: 131-147. doi: 10.1016/j.jseaes.2017.10.034
    YUAN D Y, GE W P, CHEN Z W, et al., 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies[J]. Tectonics, 32(5): 1358-1370. doi: 10.1002/tect.20081
    ZHANG D, LI J C, WU Z H, et al., 2021. Using terrestrial LiDAR to accurately measure the micro-geomorphologic geometry of active fault: A case study of fault scarp on the Maoyaba fault zone[J]. Journal of Geomechanics, 27(1): 63-72. (in Chinese with English abstract)
    ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1
    ZHANG P Z, DENG Q D, ZHANG Z Q, et al., 2013. Active faults, earthquake disasters and their dynamic processes in Chinese Mainland[J]. Chinese Science: Earth Sciences, 43(10): 1607-1620. (in Chinese)
    ZHENG D W, CLARK M K, ZHANG P Z, et al., 2010. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau)[J]. Geosphere, 6(6): 937-941. doi: 10.1130/GES00523.1
    ZHENG W J, ZHANG H P, ZHANG P Z, et al., 2013. Late Quaternary slip rates of the thrust faults in western Hexi Corridor (Northern Qilian Shan, China) and their implications for northeastward growth of the Tibetan Plateau[J]. Geosphere, 9(2): 342-354. doi: 10.1130/GES00775.1
    ZHENG W J, ZHANG Z Q, HAO M, et al., 2022. Physical basis for prediction of continental strong earthquakes: Development and prospect of active tectonic block theory[J]. Chinese Science Bulletin, 67(13): 1352-1361. (in Chinese with English abstract)
    ZHANG X Z, TIE Y B, LI G H, et al., 2022. Characteristics and risk assessment of debris flows in the Wandong catchment after the MS 6.8 Luding earthquake. Journal of Geomechanics, 28 (6): 1035-1045. (in Chinese with English abstract)
    ZIELKE O, 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault (Science (1119))[J]. Science, 329(5990): 390.
    ZUZA A V, CHENG X G, YIN A, 2016. Testing models of Tibetan Plateau formation with Cenozoic shortening estimates across the Qilian Shan-Nan Shan thrust belt[J]. Geosphere, 12(2): 501-532.
    陈柏林, 刘建生, 张永双, 等, 2010. 河西走廊及邻区大震重复周期估算与未来地震趋势[J]. 地质力学学报, 16(2): 159-175. https://journal.geomech.ac.cn/article/id/595a9e5d-d0a0-4928-ac94-43967c45ca04?viewType=HTML
    顾功叙, 1983. 中国地震目录(公元前1831-公元1969年)[M]. 北京: 科学出版社.
    国家地震局地质研究所, 国家地震局兰州地震研究所, 1993. 祁连山-河西走廊活动断层系[M]. 北京: 地震出版社.
    刘兴旺, 袁道阳, 何文贵, 2014. 祁连山北缘佛洞庙-红崖子断层古地震特征初步研究[J]. 震灾防御技术, 9(3): 411-419. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201403007.htm
    李红强, 袁道阳, 苏琦, 等, 2023. 祁连山内部门源盆地地貌特征及构造意义[J]. 地质力学学报, 29(6): 824-841. doi: 10.12090/j.issn.1006-6616.2023123?viewType=HTML
    徐锡伟, 吴熙彦, 于贵华, 等, 2017. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质, 39(2): 219-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201702001.htm
    杨海波, 杨晓平, 黄雄南, 2017. 祁连山北缘断层带中段晚第四纪活动速率初步研究[J]. 地震地质, 39(1): 20-42.
    张迪, 李家存, 吴中海, 等, 2021. 利用地面LiDAR精细化测量活断层微地貌形态: 以毛垭坝断层禾尼处断层崖为例[J]. 地质力学学报, 27(1): 63-72. doi: 10.12090/j.issn.1006-6616.2021.27.01.007?viewType=HTML
    张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断层、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310005.htm
    张宪政, 铁永波, 李光辉, 等, 2022. 四川泸定MS6.8级地震区湾东河流域泥石流活动性预测. 地质力学学报, 28 (6): 1035-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202305009.htm
    郑文俊, 张竹琪, 郝明, 等, 2022. 强震孕育发生的大陆活动地块理论未来发展与强震预测探索[J]. 科学通报, 67(13): 1352-1361. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202213002.htm
  • 加载中

Catalog

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (79) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return