Volume 30 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
CHEN B L,2024. Characteristics of hydraulic ore-bearing structure: A case study of hydrothermal tungsten and uranium deposits in South China[J]. Journal of Geomechanics,30(1):15−37 doi: 10.12090/j.issn.1006-6616.2023127
Citation: CHEN B L,2024. Characteristics of hydraulic ore-bearing structure: A case study of hydrothermal tungsten and uranium deposits in South China[J]. Journal of Geomechanics,30(1):15−37 doi: 10.12090/j.issn.1006-6616.2023127

Characteristics of hydraulic ore-bearing structure: A case study of hydrothermal tungsten and uranium deposits in South China

doi: 10.12090/j.issn.1006-6616.2023127
Funds:  This research is financially supported by the National Key R&D Program of China (Grants No. 22016YFC0600207 and 2017YFC0602602) and the Reasearch Fund of the Chinese Academy of Geological Sciences (Grant No. JYYWF20180602).
More Information
  • Received: 2023-08-01
  • Revised: 2023-10-08
  • Accepted: 2024-01-02
  • Available Online: 2024-01-24
  • Published: 2024-02-28
  •   Objective  Hydraulic fracturing is a vital deformation and fracture mode in the whole crust-lithosphere range. The related structures are also critical ore-bearing structures of some hydrothermal deposits. Clarifying the main characteristics and identification marks of hydraulic fracturing ore-bearing structures aids in conducting detailed structural analyses of ore fields.  Methods  The article introduces the formation mechanism of hydraulic fracturing structures and classifies the hydraulic ore-bearing structures into two types, namely, hydraulic fracturing and hydraulic spreading. Taking typical hydrothermal tungsten and uranium deposits in South China as examples, the study, based on detailed field investigations, analyzes the essential characteristics of hydraulic fracturing ore-bearing structures, including the Shimensi tungsten deposit, Xingluokeng tungsten deposit and Zoujiashan uranium deposit.  Results  The study suggests that hydraulic fracturing ore-bearing structures are characterized by complex shapes (arc-shaped, branched, radial, chrysanthemum-shaped, etc.), relatively small scale, predominantly tensional macro-mechanical properties, variable trends and dips, indistinct directionality with dominant orientations in only local areas, and often accompanied by hydrothermal crypto-explosive breccia. Meanwhile, five typical marks of the hydraulically fractured ore-bearing structures have been identified, including arc bifurcation or irregular shape, overall small scale, multi-directional occurrence, uneven distribution, and associated hydrothermal crypto-explosive breccia.  Conclusion  After comparing and analyzing the similarities and differences between hydraulic fracturing ore-bearing structures and stress-induced ore-bearing fracturing, the study concludes that hydraulic fracturing ore-bearing structures are relatively limited in development. In contrast, hydraulic spreading fracturing ore-bearing structures are relatively common. There is no apparent correlation between the hydrothermal alteration zoning and whether the ore-bearing structure is due to hydraulic fracturing or stress-induced fracturing. Tensional structural features exhibited by compressional genesis structures during the mineralization period are attributed to overpressure from mineralizing fluids rather than changes in regional tectonic stress fields. Although the ore-bearing structures of compressive origin show tensional macro-mechanical properties during the metallogenic period, some result from the overpressure of ore-forming fluids rather than the change in the regional tectonic stress field. [ Significance ] As an important ore-bearing structure type, hydraulic fracturing enriches the connotation of ore field structure. The coupling effect between the extensional fracturing of fracture ends caused by hydraulic fracturing and ore-forming fluids is an essential mechanism of structural control of the ore-forming end effect, which will enhance the theory of structural ore control and contribute to breakthroughs in prospecting strategies.

     

  • loading
  • [1]
    BARCOS L, DÍAZ-AZPIROZ M, BALANYÁ J C, et al. , 2016. Analogue modelling of inclined, brittle-ductile transpression: Testing analytical models through natural shear zones (external Betics)[J]. Tectonophysics, 682: 169-185. doi: 10.1016/j.tecto.2016.05.021
    [2]
    BONS P D, ELBURG M A, GOMEZ-RIVAS E, 2012. A review of the formation of tectonic veins and their microstructures[J]. Journal of Structural Geology, 43: 33-62. doi: 10.1016/j.jsg.2012.07.005
    [3]
    BOULLIER A M, ROBERT F, 1992. Palaeoseismic events recorded in Archaean gold-quartz vein networks, Val d'Or, Abitibi, Quebec, Canada[J]. Journal of Structural Geology, 14(2): 161-179. doi: 10.1016/0191-8141(92)90054-Z
    [4]
    BYERLEE J, 1993. Model for episodic flow of high –pressure water in fault zones before earthquakes[J]. Geology, 21(4): 303-306. doi: 10.1130/0091-7613(1993)021<0303:MFEFOH>2.3.CO;2
    [5]
    CHEN B L, 2020. Development process of fault structure and formation and evolution of ore-controlling structure: a case study of the Zoujiashan uranium deposit[J]. Journal of Geomechanics, 26(3): 285-298. (in Chinese with English abstract)
    [6]
    CHEN B L, GAO Y, SHEN J H, et al. , 2021a. Study on the ore-bearing fracture system of the Zoujiashan Uranium Deposit, Jiangxi, SE China[J]. Acta Geologica Sinica, 95(5): 1523-1544. (in Chinese with English abstract)
    [7]
    CHEN B L, GAO Y, SHEN J H, et al. , 2021b. Structural control of ore body location[R]. Beijing: Institute of Geomechanics, Chinese Academy of Geological Sciences. (in Chinese)
    [8]
    CHEN B L, GAO Y, SHEN J H, et al. , 2022. Analysis of Ore-controlling structure of Changjiang Uranium Ore Field, northern Guangdong[J]. Earth Science, 47(1): 159-177. (in Chinese with English abstract)
    [9]
    CHEN F E, LIU J Z, WANG Z P, et al. , 2020. Exploration research progress and deep prospecting prediction of Huijiabao gold ore field in Southwest Guizhou[J]. Guizhou Geology, 37(2): 115-123. (in Chinese with English abstract)
    [10]
    CHEN L Y, LI X J, BI J, et al. , 2019. Effect of proppant on pore structure in northern Guizhou shale during hydraulic fracturing[J]. Ming Tecknology, 19(4): 11-14. (in Chinese without English abstract)
    [11]
    CHEN Y C, WANG D H, XU Z G, et al. , 2014. Outline of regional metallogeny of ore deposits associated with the Mesozoic magmatism in South China[J]. Geotectonica et Metallogenia, 38(2): 219-229. (in Chinese with English abstract)
    [12]
    COX S F, 1995. Faulting processes at high fluid pressures: an example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia[J]. Journal of Geophysical Research: Solid Earth, 100(B7): 12841-12859. doi: 10.1029/95JB00915
    [13]
    DOOLEY T P, SCHREURS G, 2012. Analogue modelling of intraplate strike-slip tectonics: a review and new experimental results[J]. Tectonophysics, 574-575: 1-71. doi: 10.1016/j.tecto.2012.05.030
    [14]
    DU J G, WU K T, SUN F X, et al. , 2022. Cryptoexplosive breccia: a genetic mark of the paleoearthquakes[J]. Acta Petrologica Sinica, 38(3): 913-922. (in Chinese with English abstract) doi: 10.18654/1000-0569/2022.03.18
    [15]
    FAN H R, LAN T G, LI X H, et al. , 2021. Conditions and processes leading to large-scale gold deposition in the Jiaodong province, eastern China[J]. Science China Earth Sciences, 64(9): 1504-1523. (in Chinese with English abstract) doi: 10.1007/s11430-020-9789-2
    [16]
    FANG W X, GUO Y Q, JIA R X, et al. , 2021. On relationship between the superimposed mineralization systems and the zoning patterns of vertical tectonic lithofacies in the Gejiu concentration area of Sn-Cu-W and three rare metals in Yunnan[J]. Journal of Geomechanics, 27(4): 557-584. (in Chinese with English abstract)
    [17]
    GAO Y, ZHOU Y L, 2017. Geological characteristics and formation process of the Baquan cryptoexplosive breccia-type uranium ore deposit in Xiangshan, Jiangxi[J]. East China Geology, 38(2): 126-131. (in Chinese with English abstract)
    [18]
    GRIFFITH A A, 1921. VI. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 221(582-593): 163-198.
    [19]
    GRIGGS D, HANDIN J, 1960. Rock deformation[M]. New York: Geological Society of America: 193-226.
    [20]
    GUDEMANN R E, 1990. Introduction to rock machamcs[M]. WANG H R, WANG H S, trans. Beijing: Water Resources and Electric Power Press: 1-298. (in Chinese)
    [21]
    GUDMUNDSSON A, 1999. Fluid overpressure and stress drop in fault zones[J]. Geophysical Research Letters, 26(1): 115-118. doi: 10.1029/1998GL900228
    [22]
    HU R Z, BI X W, PENG J T, et al. , 2007. Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallogenesis in South China[J]. Mineral Deposits, 26(2): 139-152. (in Chinese with English abstract)
    [23]
    HU R Z, BI X W, ZHOU M F, et al. , 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the cretaceous to tertiary[J]. Economic Geology, 103(3): 583-598. doi: 10.2113/gsecongeo.103.3.583
    [24]
    HUBBERT M H, RUBEY W W, 1959. Role of fluid pressure in mechanics of overthrust faulting[J]. Geological Society of America Bulletin, 70(2): 115-166. doi: 10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2
    [25]
    JIA R X, FANG W X, 2022. The genesis and ore-controlling regularity of interbedded orebodies controlled by tectonics and lithofacies in Lutangba, Gejiu, Yunnan Province[J]. Journal of Geomechanics, 28(1): 67-77. (in Chinese with English abstract)
    [26]
    JIANG Y, ZHAO X L, LI L M, et al. , 2020. Neoproterozoic continental margin –arc magmatic activity of the Nanping-Ninghua Tectonic Belt, South China: implications for tectonic evolution of the Wuyi Orogenic Belt[J]. Geology in China, 47(4): 1010-1024. (in Chinese with English abstract)
    [27]
    KERRICH R, FENG R, 1992. Archean geodynamics and the Abitibi-Pontiac collision: implications for advection of fluids at transpressive collisional boundaries and the origin of giant quartz vein systems[J]. Earth-Science Reviews, 32(1-2): 33-60. doi: 10.1016/0012-8252(92)90011-H
    [28]
    LIANG G H, 2017. Preliminary study of the relationship between cryptoexplosion and ore-forming process from Wenchuan earthquake[J]. Acta Petrologica Sinica, 33(2): 326-338. (in Chinese with English abstract)
    [29]
    LIU L M, 2011. Fluid overpressure and rock fracturing caused by shallow intrusion and their constraints on hydrothermal mineralization[J]. Earth Science Frontiers, 18(5): 78-89. (in Chinese with English abstract)
    [30]
    LIU Q S, WEI L, LIU X W, et al. , 2017. A revised empirical method for predicting crack initiation based on Griffith strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 36(7): 1561-1569. (in Chinese with English abstract)
    [31]
    LYU G X, KONG Q C, 1993. Geology of Linglong-Jiaojia-type gold deposit[M]. Beijing: Science Press: 1-260. (in Chinese)
    [32]
    LYU G X, CHEN J, LI X B, et al. , 1998. Studies on structural additional static pressure and the estimation on diagenetic depth of the coesite-bearing eclogite[J]. Chinese Science Bulletin, 43(24): 2590-2602. (in Chinese) doi: 10.1360/csb1998-43-24-2590
    [33]
    LYU G X, 2019. Research on tectonic dynamo-petrogenesis and metallogenesis and tectonophysicochemistry[J]. Journal of Geomechanics, 25(5): 962-980. (in Chinese with English abstract)
    [34]
    MAO J W, LUO M C, XIE G Q, et al. , 2014. Basic Characteristics and new advances in research and exploration on porphyry copper deposits[J]. Acta Geologica Sinica, 88(12): 2153-2175. (in Chinese with English abstract)
    [35]
    MAO J W, WU S H, SONG S W, et al. , 2020. The World-class Jiangnan Tungsten Belt: geological characteristics, Metallogeny, and Ore Deposit Model[J]. Chinese Science Bulletin, 65(33): 3746-3762. (in Chinese with English abstract) doi: 10.1360/TB-2020-0370
    [36]
    NAYLOR M A, MANDL G, SUPESTEIJN C H K, 1986. Fault geometries in basement-induced wrench faulting under different initial stress states[J]. Journal of Structural Geology, 8(7): 737-752. doi: 10.1016/0191-8141(86)90022-2
    [37]
    PHILLIPS W J, 1972. Hydraulic fracturing and mineralization[J]. Journal of the Geological Society, 128(4): 337-359. doi: 10.1144/gsjgs.128.4.0337
    [38]
    RICHARD P D, NAYLOR M A, KOOPMAN A, 1995. Experimental models of strike-slip tectonics[J]. Petroleum Geoscience, 1(1): 71-80. doi: 10.1144/petgeo.1.1.71
    [39]
    SIBSON R H, ROBERT F, POULSEN K H, 1988. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits[J]. Geology, 16(6): 551-555. doi: 10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2
    [40]
    SIBSON R H, 1990. Fault structure and mechanics in relation to greenstone gold deposits[M]//ROBERT F, SHEAHAN P A, GREEN S B. Greenstone gold and crustal evolution, NUNA conference volume. Geological Association of Canada, 54-60.
    [41]
    SLEEP N H, BLANPIED M L, 1992. Creep, compaction and the weak rheology of major faults[J]. Nature, 359(6397): 687-692. doi: 10.1038/359687a0
    [42]
    TONG H M, WANG J J, ZHAO H T, et al. , 2014. Mohr space and its application to the activation prediction of pre-existing weakness[J]. Science China: Earth Sciences, 57(7): 1595-1604. (in Chinese with English abstract) doi: 10.1007/s11430-014-4860-1
    [43]
    WANG H, FENG C Y, LI R X, et al. , 2021. Ore-forming mechanism and fluid evolution processes of the Xingluokeng tungsten deposit, western Fujian Province: constraints form in-situ trace elemental and Sr isotopic analyses of scheelite[J]. Acta Petrologica Sinica, 37(3): 698-716. (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.03.04
    [44]
    WANG J C, WEI L M, ZHU W F, et al. , 2008. Texture and tectonic style of “Five-storeyed Type” for the tungsten deposits in the Nanling Mountains, southern China: an example from the Meiziwo tungsten deposit[J]. Acta Geologica Sinica, 82(7): 894-899. (in Chinese with English abstract)
    [45]
    WANG L, WANG L, LIAO Q M, 2012. Summary and application of occurrence law of branch orebodies with low grade and small scale in Shazhou Mine[C]//Essay collection of the academic research conference on the construction of national uranium base. Haikou: Chinese Nuclear Society: 1227-1231. (in Chinese)
    [46]
    WANG Y M, CHENG D, DONG J B, 1997. Influence of thermodynamic factors with temperature change during magma rising process[J]. Journal of Geology & Mineral Resources in North China, 12(2): 114-121. (in Chinese with English abstract)
    [47]
    WANG Z Y, ZHAO X L, YU S Y, et al. , 2020. Cretaceous granitic intrusions in Fujian Province, Cathaysia Block: implications for slab rollback and break-off of the Paleo-Pacific plate[J]. Journal of Asian Earth Sciences, 190: 104164. doi: 10.1016/j.jseaes.2019.104164
    [48]
    WU G G and LYU C X. 2011. Research history, present situation and development of ore field structure study[J]. Geological Bulletin of China, 30(4): 461-468 (in Chinese with English abstract)
    [49]
    WU Y F, LI S J, ZHOU Y H, HUANG Z and FAN T. 2023. Study on the fracture characteristics of sandstone and the effect of grouting reinforcement under different confining pressure[J]. Chinese Journal of Underground Space and Engineering, 19(2): 80-90 (in Chinese with English abstract).
    [50]
    XIA Y L, 2019. Geochronology of uranium mineralization in China[M]. Beijing: China Atomic Energy Press: 1-301. (in Chinese)
    [51]
    XIANG X K, Liu X M, ZHAN G N, 2012. Discovery of Shimensi super-large tungsten deposit and its prospecting significance in Dahutang area, Jiangxi Province[J]. Resources Survey & Environment, 33(3): 141-151. (in Chinese with English abstract)
    [52]
    XIANG X K, WANG P, ZHAN G N, et al. , 2013. Geological characteristics of Shimensi Tungsten Polymetallic Deposit in northern Jiangxi province[J]. Mineral Deposits, 32(6): 1171-1187. (in Chinese with English abstract)
    [53]
    YU X D, XU L, LIU C M, et al. , 1994. A preliminary research on fluid fracturing mechanism on Xiaoqinling deposits[J]. Henan Geology, 12(1): 1-4. (in Chinese with English abstract)
    [54]
    YU X F, LI D P, SHAN W, et al. , 2022. Yanshanian gold metallogenic system and metallogenic model of the Guilaizhuang gold ore field, western Shandong[J]. Journal of Geomechanics, 28(5): 821-841. (in Chinese with English abstract)
    [55]
    ZHAI Y S, LIN X D, 1993. Structural geology in ore field[M]. Beijing: Geological Publishing House: 1-214. (in Chinese)
    [56]
    ZHANG J J, CHEN Z H, WANG D H, et al. , 2008. Geological characteristics and metallogenic epoch of the Xingluokeng tungsten deposit, Fujian Province[J]. Geotectonica et Metallogenia, 32(1): 92-97. (in Chinese with English abstract)
    [57]
    ZHANG T F, PAN X F, YANG D, et al. , 2015. Fluid evolution of the alteration-mineralization system in the Zhushahong copper-gold porphyry deposit, Dexing, Jiangxi Province: constraint from H-O isotopes[J]. Acta Petrologica et Mineralogica, 34(4): 505-516. (in Chinese with English abstract)
    [58]
    ZHANG W L, LI Z Y, 2005. Metallogenetic characteristics and material source of Zoujiashan uranium deposit, Jiangxi province[J]. Geoscience, 19(3): 369-374. (in Chinese with English abstract)
    [59]
    ZHANG W L, YANG S, YU S, 2015. Orebody shape, size and its variation characteristics in Zoujiashan uranium deposit[J]. Uranium Geology, 31(3): 363-369. (in Chinese with English abstract)
    [60]
    ZHANG W L, LI Z Y, QUE Z S, et al. , 2017. Inspiration from hydraulic fracturing technology for the causes of the Xiangshan hydrothermal uranium deposit in Jiangxi[J]. Geoscience, 31(3): 521-533. (in Chinese with English abstract)
    [61]
    ZHANG W L, GUO F S, CHEN Z P, 2021. Hydrofracturing uranium mineralization: taking Xiangshan ore field as an example[M]. Beijing: Geological Publishing House: 1-132. (in Chinese)
    [62]
    ZHANG W X, WANG Z L, XIAO Z W, et al. , 2014. Study on the geological characteristics and prospecting direction in Zoujiashan uranium deposit of Jiangxi province[J]. Journal of Changchun Institute of Technology (Natural Sciences Edition), 15(1): 62-65. (in Chinese with English abstract)
    [63]
    ZHANG Y Y, LI Z Y, CAO S S, 2011. Alteration zone and its geochemical characteristics of Julongan uranium deposit[J]. Uranium Geology, 27(2): 95-102. (in Chinese with English abstract)
    [64]
    ZHU X, HUANG C K, RUI Z Y, 1983. Dexing porphyry copper deposit[M]. Beijing: Geological Publishing House: 1-314. (in Chinese)
    [65]
    陈柏林, 2020. 断裂构造发育过程与控矿构造形成演化: 以邹家山铀矿床为例[J]. 地质力学学报, 26(3): 285-298.
    [66]
    陈柏林, 高允, 申景辉, 等, 2021a. 邹家山铀矿床含矿裂隙系统研究[J]. 地质学报, 95(5): 1523-1544.
    [67]
    陈柏林, 高允, 申景辉, 等, 2021b. 矿体定位的构造控制[R]. 北京: 中国地质科学院地质力学研究所.
    [68]
    陈柏林, 高允, 申景辉, 等, 2022. 粤北长江铀矿田控矿构造解析[J]. 地球科学, 47(1): 159-177.
    [69]
    陈发恩, 刘建中, 王泽鹏, 等, 2020. 贵州西南部灰家堡金矿田勘查研究进展与深部找矿预测[J]. 贵州地质, 37(2): 115-123.
    [70]
    陈刘瑜, 李希建, 毕娟, 等. 2019. 水力压裂中支撑剂对黔北页岩孔隙结构的影响[J]. . 采矿技术, 19(4): 11-14
    [71]
    陈毓川, 王登红, 徐志刚, 等, 2014. 华南区域成矿和中生代岩浆成矿规律概要[J]. 大地构造与成矿学, 38(2): 219-229.
    [72]
    杜建国, 仵柯田, 孙凤霞, 等, 2022. 隐爆角砾岩—古地震的一种成因标志[J]. 岩石学报, 38(3): 913-922.
    [73]
    范宏瑞, 蓝廷广, 李兴辉, 等, 2021. 胶东金成矿系统的末端效应[J]. 中国科学: 地球科学, 51(9): 1504-1523.
    [74]
    方维萱, 郭玉乾, 贾润幸, 等, 2021. 论云南个旧锡铜钨三稀金属矿集区叠加成矿系统与垂向构造岩相学结构的关系[J]. 地质力学学报, 27(4): 557-584.
    [75]
    高琰, 周玉龙, 2017. 江西相山巴泉隐爆角砾岩型铀矿床地质特征及形成过程[J]. 华东地质, 38(2): 126-131.
    [76]
    古德曼 R E, 1990. 岩石力学原理及其应用[M]. 王鸿儒, 王宏硕, 译. 北京: 水利电力出版社: 1-298.
    [77]
    胡瑞忠, 毕献武, 彭建堂, 等. 2007. 华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题[J]. 矿床地质, 26(2): 139-152.
    [78]
    贾润幸, 方维萱, 2022. 云南个旧芦塘坝矿段层间矿成因及构造-岩相控矿规律[J]. 地质力学学报, 28(1): 67-77.
    [79]
    姜杨, 赵希林, 李龙明, 等, 2020. 闽中南平-宁化构造带南华纪陆缘弧岩浆活动: 对武夷造山带构造演化的新启示[J]. 中国地质, 47(4): 1010-1024.
    [80]
    梁光河, 2017. 从汶川地震探讨隐爆与成矿过程[J]. 岩石学报, 33(2): 326-338.
    [81]
    刘亮明, 2011. 浅成岩体引发的流体超压与岩石破裂及其对成矿的制约[J]. 地学前缘, 18(5): 78-89.
    [82]
    刘泉声, 魏莱, 刘学伟, 等, 2017. 基于Griffith强度理论的岩石裂纹起裂经验预测方法研究[J]. 岩石力学与工程学报, 36(7): 1561-1569.
    [83]
    吕古贤, 孔庆存, 1993. 胶东玲珑-焦家式金矿地质[M]. 北京: 科学出版社: 1-260.
    [84]
    吕古贤, 陈晶, 李晓波, 等, 1998. 构造附加静水压力研究与含柯石英榴辉岩成岩深度测算[J]. 科学通报, 43(24): 2590-2602.
    [85]
    吕古贤, 2019. 构造动力成岩成矿和构造物理化学研究[J]. 地质力学学报, 25(5): 962-980.
    [86]
    毛景文, 罗茂澄, 谢桂青, 等, 2014. 斑岩铜矿床的基本特征和研究勘查新进展[J]. 地质学报, 88(12): 2153-2175.
    [87]
    毛景文, 吴胜华, 宋世伟, 等, 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型[J]. 科学通报, 65(33): 3746-3762.
    [88]
    童亨茂, 王建君, 赵海涛, 等, 2014. “摩尔空间”及其在先存构造活动性预测中的应用[J]. 中国科学: 地球科学, 44(9): 1948-1957.
    [89]
    王辉, 丰成友, 李荣西, 等, 2021. 闽西行洛坑钨矿流体演化过程与成矿机制: 白钨矿原位微量元素、Sr同位素的制约[J]. 岩石学报, 37(3): 698-716.
    [90]
    汪劲草, 韦龙明, 朱文凤, 等, 2008. 南岭钨矿“五层楼模式”的结构与构式: 以粤北始兴县梅子窝钨矿为例[J]. 地质学报, 82(7): 894-899.
    [91]
    王龙, 王雷, 廖庆明, 2012. 沙洲矿井贫小分支矿体赋存规律总结与应用[C]//全国铀矿大基地建设学术研讨会论文集(下). 海口: 中国核学会: 1227-1231.
    [92]
    王玉明, 程东, 董靖保, 1997. 岩浆上升过程中各种热力学因素对岩浆温度的影响[J]. 华北地质矿产杂志, 12(2): 114-121.
    [93]
    吴淦国, 吕承训. 2011. 矿田构造的研究历史、现状和发展[J]. 地质通报, 30(4): 461-468.
    [94]
    巫宇帆, 李士杰, 周裕厚, 等, 2023. 不同围压下砂岩破裂特征与注浆加固效应研究[J]. 地下空间与工程学报, 19(2): 680-690.
    [95]
    夏毓亮, 2019. 中国铀成矿地质年代学[M]. 北京: 中国原子能出版社: 1-301.
    [96]
    项新葵, 刘显沐, 詹国年, 2012. 江西省大湖塘石门寺矿区超大型钨矿的发现及找矿意义[J]. 资源调查与环境, 33(3): 141-151.
    [97]
    项新葵, 王朋, 詹国年, 等, 2013. 赣北石门寺超大型钨多金属矿床地质特征[J]. 矿床地质, 32(6): 1171-1187.
    [98]
    尉向东, 徐莉, 刘长命, 等, 1994. 小秦岭金矿液压致裂成矿机制初探[J]. 河南地质, 12(1): 1-4.
    [99]
    于学峰, 李大鹏, 单伟, 等, 2022. 鲁西归来庄金矿田燕山期金成矿系统及成矿模式[J]. 地质力学学报, 28(5): 821-841.
    [100]
    翟裕生, 林新多, 1993. 矿田构造学[M]. 北京: 地质出版社: 1-214.
    [101]
    张家菁, 陈郑辉, 王登红, 等, 2008. 福建行洛坑大型钨矿的地质特征、成矿时代及其找矿意义[J]. 大地构造与成矿学, 32(1): 92-97.
    [102]
    张天福, 潘小菲, 杨丹, 等, 2015. 德兴朱砂红斑岩铜(金)矿床蚀变-矿化系统流体演化: 来自H-O同位素的制约[J]. 岩石矿物学杂志, 34(4): 505-516.
    [103]
    张万良, 李子颖, 2005. 江西邹家山铀矿床成矿特征及物质来源[J]. 现代地质, 19(3): 369-374.
    [104]
    张万良, 杨松, 余水, 2015. 邹家山铀矿床矿体形态、规模及其变化特征[J]. 铀矿地质, 31(3): 363-369.
    [105]
    张万良, 李子颖, 阙足双, 等, 2017. 水力压裂技术对江西相山热液铀矿成因的启示[J]. 现代地质, 31(3): 521-533.
    [106]
    张万良, 郭福生, 陈志平, 2021. 水力压裂铀成矿作用: 以相山矿田为例[M]. 北京: 地质出版社: 1-132.
    [107]
    章卫星, 王志励, 肖志伟, 等, 2014. 江西邹家山铀矿床地质特征及找矿方向研究[J]. 长春工程学院学报(自然科学版), 15(1): 62-65. doi: 10.3969/j.issn.1009-8984.2014.01.015
    [108]
    张玉燕, 李子颖, 曹寿孙, 2011. 居隆庵铀矿床蚀变分带及其地球化学特征[J]. 铀矿地质, 27(2): 95-102.
    [109]
    朱训, 黄崇坷, 芮宗瑶, 1983. 德兴斑岩铜矿[M]. 北京: 地质出版社: 1-314.
  • 加载中

Catalog

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (207) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return