Volume 30 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
YAO Shenghai, GAI Hailong, YIN Xiang, et al., 2024. Late Quateranry paleoseismicity of the Xitieshan-Amunikeshan section of the northern margin fault of the Qaidam Basin. Journal of Geomechanics, 30 (2): 260-274. DOI: 10.12090/j.issn.1006-6616.2023114
Citation: YAO Shenghai, GAI Hailong, YIN Xiang, et al., 2024. Late Quateranry paleoseismicity of the Xitieshan-Amunikeshan section of the northern margin fault of the Qaidam Basin. Journal of Geomechanics, 30 (2): 260-274. DOI: 10.12090/j.issn.1006-6616.2023114

Late Quateranry paleoseismicity of the Xitieshan-Amunikeshan section of the northern margin fault of the Qaidam Basin

doi: 10.12090/j.issn.1006-6616.2023114
Funds:

the Basic Research Project of the Science and Technology Department of Qinghai Province 2018-ZJ-746

More Information
  • Received: 2023-07-05
  • Revised: 2024-02-25
  • Accepted: 2024-03-04
  • Published: 2024-04-15
  •   Objective  The northern margin fault zone of the Qaidam Basin is a regional active fault zone in the northern part of the Qinghai-Tibet Plateau, forming the boundary fault of the northern Qaidam Basin and the Qilian Mountains. Studying its late Quaternary paleoseismic activity is of great significance for understanding the seismic recurrence cycle and seismic hazard of the northern margin fault zone of the Qaidam Basin.  Methods  Through geological survey, remote sensing interpretation, trench excavation, OSL geological dating, and analysis of paleoseismic events, the paleoseismic events of the northern margin fault of the Qaidam Basin (Xitieshan-Amunikeshan section) were studied.  Conclusion   The study reveals that the trench profiles exposed five relatively reliable paleoseismic events, with occurrence times of approximately 60 years ago for Event E1, 3.1±0.3 to 3.4±0.3 ka for Event E2, 7.5±0.3 to 8.1±0.3 ka for Event E3, 10.1±0.4 to 11.4±0.4 ka for Event E4, and 12.1±0.4 to 12.8±0.4 ka for Event E5. Using the paleoseismic incremental limiting method, the seismic recurrence cycle of the northern margin fault of the Qaidam Basin (Xitieshan-Amunikeshan section) is estimated to be 2.6 to 3.4 ka. The most recent event departure time for the Amunikeshan section is 60 years ago, and for the Xitieshan section, it is 3.1±0.3 ka, suggesting a higher likelihood of destructive earthquakes in the future for the Xitieshan section compared to the Amunikeshan section of the northern margin fault of the Qaidam Basin.  Significance  This result can provide a better understanding of the paleoseismic events, recurrence intervals, and other aspects of the northern margin fault of the Qaidam Basin, which has guiding significance for seismic forecasting, prediction, and evaluation of future seismic hazards of this fault.

     

  • loading
  • DENG Q D, FENG X Y, YANG X P, et al., 1994. Study on holocene paleoearthquakes by Large Trench in the Manas-Tugulu reverse Fault and fold zone along Northern Margin of the Tianshan Mountain, in Xinjiang[M]//Research on active fault(3). Beijing: Seismological Press: 1-17. (in Chinese)
    DENG Q D, WEN X Z, 2008. A review on the research of active tectonics: History, progress and suggestions[J]. Seismology and Geology, 30(1): 1-30. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2008.01.002
    DING G Y, 1982. Paleoearthquake sign problem[M]//Active faults in China. Beijing: Seismological Press: 276-281. (in Chinese)
    DONG J Y, LI C Y, ZHENG W J, et al., 2019. Geomorphic features and late quaternary slip rate of the southern Zongwulong Shan fault[J]. Seismology and Geology, 41(2): 341-362. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2019.02.006
    GAI H L, YAO S H, YANG L P, et al., 2021. Characteristics and causes of coseismic surface rupture triggered by the "5.22" MS7.4 Earthquake in Maduo, Qinghai, and their significance[J]. Journal of Geomechanics, 27(6): 899-912. (in Chinese with English abstract)
    GAO Y P, LIU J, HAN L F, et al., 2023. Discussion on the magnitude or intensity limitation of paleoearthquake events[J]. Journal of Geomechanics, 29(5): 704-719. (in Chinese with English abstract)
    LIU G X, MENG F X, XIAO Z M, et al., 1982. Discussion on ancient earthquake relics and related issues in Xunbao village, Hongdong county, Shanxi province[M]//Active faults in China. Beijing: Seismological Press: 291-300. (in Chinese)
    LIU X L, YUAN D Y, 2004. Study on the new active features of Bayinguole River active fault, Delingha, Qinghai Province[J]. Northwestern Seismological Journal, 26(4): 303-308. (in Chinese with English abstract)
    MA Y S, ZHANG Y S, HU D G, et al., 2010. The surface ruptures and the macroscopical epicenter of Yushu MS7.1 earthquake[J]. Journal of Geomechanics, 16(2): 115-128. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2010.02.002
    MAO F Y, ZHANG P Z, 1995. Progressive constraining method in paleoseismic study and paleoearthquakes along the major active faults in northern Xinjiang[M]//Institute of Geology SSB. Research on active fault(4). Beijing: Seismological Press Beijing: 153-164. (in Chinese)
    PANG W, HE W G, YUAN D Y, et al., 2015. Paleoseismic characteristics of dachaidan fault in Qinghai[J]. Journal of Earth Sciences and Environment, 37(3): 87-103. (in Chinese with English abstract)
    RAN Y K, 1997. Detailed research of paleoearthquakes at several typical regions in China and exploration of recurrence behavior of large earthquakes[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
    RAN Y K, DENG Q D, 1999. History, status and trend about the research of paleoseismology[J]. Chinese Science Bulletin, 44(10): 880-889. doi: 10.1007/BF02885057
    RAN Y K, WANG H, LI Y B, et al., 2012a. Key techniques and several cases analysis in paleoseismic studies in mainland China(1): Trenching sites, layouts and paleoseismic indicators on active strike-slip faults[J]. Seismology and Geology, 34(2): 197-210. (in Chinese with English abstract)
    RAN Y K, CHEN L C, CHEN W S, et al., 2012b. Key techniques and several cases analysis in paleoseismic studies in mainland China (2): Surface deformation characteristics of Wenchuan earthquake and paleoseismic indicators on fold-reverse fault[J]. Seismology and Geology, 34(3): 385-400. (in Chinese with English abstract)
    RAN Y K, WANG H, ZHANG P Z, et al., 2013. Techniques and methods of paleoseismic studies[M]//DING Z L. Methods of research in solid earth sciences. Beijing: Science Press: 258-275. (in Chinese)
    RAN Y K, LI Y B, DU P, et al., 2014a. Key techniques and several cases analysis in paleoseismic studies in mainland China (3): Rupture characteristics, environment impact and paleoseismic indicators on normal faults[J]. Seismology and Geology, 36(2): 287-301. (in Chinese with English abstract)
    RAN Y K, WANG H, YANG H L, et al., 2014b. Key techniques and several cases analysis in paleoseismic studies in mainland China (4): Sampling and event analysis of paleoseismic dating methods[J]. Seismology and Geology, 36(4): 939-955. (in Chinese with English abstract)
    RAN Y K, WANG H, CHEN L C, et al., 2018. Late-Quaternary fault activity of the Longmen Shan fault zone-Evidence from paleoseismic trenching[J]. Chinese Journal of Geophysics, 61(5): 1938-1948. (in Chinese with English abstract)
    TANG L J, JIN Z J, DAI J S, et al., 2002. Regional fault systems of Qaidam basin and adjacent orogenic belts[J]. Earth Science—Journal of China University of Geosciences, 27(6): 676-682. (in Chinese with English abstract)
    WANG S Y, WANG J, LI F P, et al., 2024. The late quaternary slip rate and paleoearthquakes of the Cuopuhu section of the Litang-Yidun fault, western Sichuan[J/OL]. Journal of Geomechanics. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2023060. (in Chinese with English abstract)
    WU Z H, 2019. The definition and classification of active faults: History, current status and progress[J]. Acta Geoscientica Sinica, 40(5): 661-697. (in Chinese with English abstract)
    YAO S H, HUANG W, JIANG W L, et al., 2014. Activity characteristic of Northern Margin fault at Qaidam Basin (Xitie Mountain Segment) in late quaternary[J]. Journal of Seismological Research, 37(S1): 50-54. (in Chinese with English abstract)
    YAO S H, GAI H L, YIN X, et al., 2020a. Tectonic geomorphology and quaternary slip rate of the Xitieshan Section of the Northern margin fault of Qaidam Basin[J]. Seismology and Geology, 42(6): 1385-1400. (in Chinese with English abstract)
    YAO S H, GAI H L, LIU W, et al., 2020b. Tectonic geomorphology and Late quaternary slip rate of the Amunike segment, the north Qaidam Thrust fault Zone[J]. Quaternary Sciences, 40(5): 1312-1322. (in Chinese with English abstract)
    YAO S H, GAI H L, YIN X, et al., 2022. A discussion on the relationship between the surface rupture zone in front of the Amunikeshan Mountain and the 1962 M6.8 earthquake[J]. Seismology and Geology, 44(4): 976-991. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2022.04.010
    YIN A, DANG Y Q, WANG L C, et al., 2008. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam Basin[J]. GSA Bulletin, 120(7-8): 813-846. doi: 10.1130/B26180.1
    YUAN D Y, 2003. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan plateau since the late Cenozoic time[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
    YUAN D Y, ZHANG P Z, LIU B C, et al., 2004. Geometrical imagery and tectonic transformation of late quaternary active tectonics in northeastern margin of Qinghai-Xizang plateau[J]. Acta Geologica Sinica, 78(2): 270-278. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2004.02.017
    YUAN Z D, JING L Z, ZHOU Y, et al., 2020. Paleoseismologic record of earthquakes along the Wuzunxiaoer section of the Altyn Tagh fault and its implication for cascade rupture behavior[J]. Science China Earth Sciences, 63(1): 93-107. doi: 10.1007/s11430-019-9376-8
    ZENG X, 2019. Active characteristics of Tuosuhu-Maoniushan Fault, Northern margin of Qaidam Basin[D]. Beijing: Institute of Geology, China Earthquake Administrator. (in Chinese with English abstract)
    ZHANG P Z, MAO F Y, 1996. Active faulting and fault specific probabilistic seismic hazard assessment. research on active fault(5)[M]//Beijing: Seismological Press: 12-31. (in Chinese)
    ZHANG P Z, XU X W, WEN X Z, et al., 2008. Slip rates and recurrence intervals of the Longmen Shan active fault zone, and tectonic implications for the mechanism of the May 12 Wenchuan earthquake, 2008, Sichuan, China[J]. Chinese Journal of Geophysics, 51(4): 1066-1073. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5733.2008.04.015
    ZHAO G M, WU Z H, LIU J, et al., 2019. The time space distribution characteristics and migration law of large earthquakes in the Indiam-Eurasian plate collision deformation area[J]. Journal of Geomechanics, 25(3): 324-340. (in Chinese with English abstract)
    ZHAO G M, WU Z H, LIU J, 2020. The types, characteristics and mechanism of seismic migration[J]. Journal of Geomechanics, 26(1): 13-32. (in Chinese with English abstract)
    ZHU H Z, ZHU S L, WANG L G, et al., 1979. An ancient earthquake profile in Zhongning county, Ningxia Hui autonomous region. Seismology and Geology, 1(4): 26. (in Chinese)
    邓起东, 冯先岳, 杨晓平, 等, 1994. 利用大型探槽研究新疆北天山玛纳斯和吐谷鲁逆断裂-褶皱带全新世古地震[M]//国家地震局地质研究所. 活动断裂研究(3). 北京: 地震出版社: 1-17.
    邓起东, 闻学泽, 2008. 活动构造研究: 历史、进展与建议[J]. 地震地质, 30(1): 1-30. doi: 10.3969/j.issn.0253-4967.2008.01.002
    丁国瑜, 1982. 古地震标志问题[M]//中国地震学会地震地质专业委员会. 中国活动断裂. 北京: 地震出版社: 276-281.
    董金元, 李传友, 郑文俊, 等, 2019. 宗务隆山南缘断裂构造地貌特征与晚第四纪滑动速率[J]. 地震地质, 41(2): 341-362. doi: 10.3969/j.issn.0253-4967.2019.02.006
    盖海龙, 姚生海, 杨丽萍, 等, 2021. 青海玛多"5·22"Ms7.4级地震的同震地表破裂特征、成因及意义[J]. 地质力学学报, 27(6): 899-912. doi: 10.12090/j.issn.1006-6616.2021.27.06.073
    高云鹏, 刘静, 韩龙飞, 等, 2023. 古地震事件震级或强度大小限定的讨论[J]. 地质力学学报, 29(5): 704-719. doi: 10.12090/j.issn.1006-6616.2023034
    刘光勋, 孟繁兴, 肖振敏, 等, 1982. 山西洪洞县郇堡村古地震遗迹及有关问题讨论[M]//国家地震局地震地质专业委员会. 中国活动断裂. 北京: 地震出版社: 291-300.
    刘小龙, 袁道阳, 2004. 青海德令哈巴音郭勒河断裂带的新活动特征[J]. 西北地震学报, 26(4): 303-308. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200404004.htm
    马寅生, 张永双, 胡道功, 等, 2010. 玉树地震地表破裂与宏观震中[J]. 地质力学学报, 16(2): 115-128. doi: 10.3969/j.issn.1006-6616.2010.02.002
    毛凤英, 张培震, 1995. 古地震研究的逐次限定法与新疆北部主要断裂带的古地震研究[M]//国家地震局地质研究所. 活动断裂研究(4). 北京: 地震出版社: 153-164.
    庞炜, 何文贵, 袁道阳, 等, 2015. 青海大柴旦断裂古地震特征[J]. 地球科学与环境学报, 37(3): 87-103. doi: 10.3969/j.issn.1672-6561.2015.03.012
    冉勇康, 1997. 我国几个典型地点的古地震细研究和大地震重复行为探讨[D]. 北京: 中国地震局地质研究所.
    冉勇康, 邓起东, 1999. 古地震学研究的历史、现状和发展趋势[J]. 科学通报, 44(1): 12-20. doi: 10.3321/j.issn:0023-074X.1999.01.003
    冉勇康, 王虎, 李彦宝, 等, 2012a. 中国大陆古地震研究的关键技术与案例解析(1): 走滑活动断裂的探槽地点、布设与事件识别标志[J]. 地震地质, 34(2): 197-210. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201502001.htm
    冉勇康, 陈立春, 陈文山, 等, 2012b. 中国大陆古地震研究的关键技术与案例解析(2): 汶川地震地表变形特征与褶皱逆断层古地震识别[J]. 地震地质, 34(3): 385-400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201203003.htm
    冉勇康, 王虎, 张培震, 等, 2013. 古地震研究的技术和方法[M]//丁仲礼. 固体地球科学研究方法. 北京: 科学出版社: 258-275.
    冉勇康, 李彦宝, 杜鹏, 等, 2014a. 中国大陆古地震研究的关键技术与案例解析(3): 正断层破裂特征、环境影响与古地震识别[J]. 地震地质, 36(2): 287-301. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201402001.htm
    冉勇康, 王虎, 杨会丽, 等, 2014b. 中国大陆古地震研究的关键技术与案例解析(4): 古地震定年技术的样品采集和事件年代分析[J]. 地震地质, 36(4): 939-955. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201404001.htm
    冉勇康, 王虎, 陈立春, 等, 2018. 龙门山断裂带晚第四纪的大地震活动: 来自古地震研究的资料[J]. 地球物理学报, 61(5): 1038-1948. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201805022.htm
    汤良杰, 金之钧, 戴俊生, 等, 2002. 柴达木盆地及相邻造山带区域断裂系统[J]. 地球科学—中国地质大学学报, 27(6): 676-682. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200206004.htm
    王世元, 王竞, 李福鹏, 等, 2024. 川西理塘—义敦断裂措普湖段晚第四纪滑动速率与古地震序列[J/OL]. 地质力学学报. https://journal.geomech.ac.cn/cn/article/doi/10.12090/j.issn.1006-6616.2023060.
    吴中海, 2019. 活断层的定义与分类: 历史、现状和进展[J]. 地球学报, 40(5): 661-697. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202206004.htm
    姚生海, 黄伟, 姜文亮, 等, 2014. 柴达木盆地北缘断裂(锡铁山段)晚第四纪活动性特征[J]. 地震研究, 37(S1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ2014S1009.htm
    姚生海, 盖海龙, 殷翔, 等, 2020a. 柴达木盆地北缘断裂(锡铁山段)的构造地貌特征与晚第四纪活动速率[J]. 地震地质, 42(6): 1385-1400. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202006008.htm
    姚生海, 盖海龙, 刘炜, 等, 2020b. 柴达木盆地北缘断裂(阿木尼克山段)构造地貌及晚第四纪活动速率研究[J]. 第四纪研究, 40(5): 1312-1322. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ202005019.htm
    姚生海, 盖海龙, 殷翔, 等, 2022. 阿木尼克山山前地表破裂带与1962年6.8级地震关系的讨论[J]. 地震地质, 44(4): 976-991. doi: 10.3969/j.issn.0253-4967.2022.04.010
    袁道阳, 2003. 青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D]. 北京: 中国地震局地质研究所.
    袁道阳, 张培震, 刘百篪, 等, 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 78(2): 270-278. doi: 10.3321/j.issn:0001-5717.2004.02.017
    曾洵, 2019. 柴达木盆地北缘托素湖—牦牛山断裂活动特征[D]. 北京: 中国地震局地质研究所.
    张培震, 毛风英, 1996. 活动断裂定量研究与中长期地震危险性概率评价[M]//中国地震局地质研究所. 活动断裂研究(5). 北京: 地震出版社: 12-31.
    赵根模, 吴中海, 刘杰, 等, 2019. 印度-欧亚板块碰撞变形区的大地震时空分布特征与迁移规律[J]. 地质力学学报, 25(3): 324-340. doi: 10.12090/j.issn.1006-6616.2019.25.03.030
    赵根模, 吴中海, 刘杰, 2020. 地震迁移的类型、特征及机制讨论[J]. 地质力学学报, 26(1): 13-32. doi: 10.12090/j.issn.1006-6616.2020.26.01.002
    朱海之, 朱淑莲, 王立功, 等, 1979. 中宁发现古地震剖面. 地震地质, 1(4): 26. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ197904003.htm
  • 加载中

Catalog

    Figures(14)

    Article Metrics

    Article views (49) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return