Volume 29 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
NAN D B,LI Z H,DONG X P,et al.,2023. Late Pleistocene stratigraphic sequence and geologic significance of the Kaolao Tableland in the Yuncheng Basin[J]. Journal of Geomechanics,29(4):497−511 doi: 10.12090/j.issn.1006-6616.2023042
Citation: NAN D B,LI Z H,DONG X P,et al.,2023. Late Pleistocene stratigraphic sequence and geologic significance of the Kaolao Tableland in the Yuncheng Basin[J]. Journal of Geomechanics,29(4):497−511 doi: 10.12090/j.issn.1006-6616.2023042

Late Pleistocene stratigraphic sequence and geologic significance of the Kaolao Tableland in the Yuncheng Basin

doi: 10.12090/j.issn.1006-6616.2023042
Funds:  This research is financially supported by the Geological Investigation Project of the China Geological Survey (Grants DD20221644 and DD20190018) and the National Natural Science Foundation of China (Grants No. 41972119 and 41702216).
More Information
  • Received: 2023-03-28
  • Revised: 2023-05-24
  • Accepted: 2023-05-29
  • Available Online: 2023-06-07
  • The ancient Fen River diversion was a crucial earth's surface transformation in the Yuncheng Basin during the Cenozoic. The time frame for the diversion of the ancient Fen River is still characterized by two views: the middle Pleistocene and the late Pleistocene, which has yet to be finalized. This study investigated the late Pleistocene sedimentary sequence of the Kaolao Tableland in the Yuncheng Basin, and the critical time frame of the sedimentary sequence transition was determined based on optically stimulated luminescence (OSL) dating results. The causes of the late Pleistocene sedimentary sequence of the Kaolao Tableland and the geological factors that controlled the sequence were analyzed using detrital zircon U–Pb isotope dating. It is concluded that the late Pleistocene sedimentary sequence of the Kaolao Tableland in the Yuncheng Basin is characterized by a two-layer structure, with fluvial sands in the lower part and eolian loess in the upper part. Based on the OSL dating results, the formation time of the boundary between these two parts is between ~76–63 ka B.P. Comparative analysis of detrital zircon age sequences indicates that the early Pleistocene fluvial sands in the Kaolao Tableland and sediments in the ancient Fen River have similar age sequence characteristics. Therefore, it can be deduced that the regional tectonic uplift of the northeastern Emei Terrace in the middle of the late Pleistocene resulted in the diversion and exit of the ancient Fen River from the Yuncheng Basin and the sedimentary facies began to change from fluvial to eolian. The tectonic uplift in the middle of the late Pleistocene extensively developed around the Ordos Basin, and that indicates a significant tectonic uplift of the Tibet Plateau during this time, whose remote effect might be the major cause for the exit of the ancient Fen River from the Yuncheng Basin. This research provides new sedimentary evidence for the time frame of the ancient Fen River diversion in the Yuncheng Basin.

     

  • loading
  • [1]
    AN Z S, LIU X D, 2000. History and variability of monsoon climate in East Asia[J]. Chinese Science Bulletin, 45(3): 238-249. (in Chinese) doi: 10.1360/csb2000-45-3-238
    [2]
    CHEN X Q, SHI W, HU J M, et al. , 2016. Sedimentation of the Pliocene-Pleistocene Chaizhuang section in the central of Linfen Basin, North China and its tectonic significance[J]. Journal of Geomechanics, 22(4): 984-993. (in Chinese with English abstract)
    [3]
    CUI J W, LI Z H, LIU F, et al. , 2018. Redefinition of the sedimentary time of the Salawusu Formation in the Hongsibu Basin, Ningxia and its significance[J]. Journal of Geomechanics, 24(2): 283-292. (in Chinese with English abstract)
    [4]
    CUI X F, XIE F R, LI R S, et al. , 2010. Heterogeneous features of state of tectonic stress filed in north china and deep stress in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 29(S1): 2755-2761. (in Chinese with English abstract)
    [5]
    DONG X P, LI Z H, CUI J W, et al. , 2022. Discovery of periglacial phenomena in the late stage of Last Glacial Maximum at the upper to middle reaches of Qingshuihe River, Ningxia, China[J]. Journal of Earth Sciences and Environment, 44(3): 524-534. (in Chinese with English abstract)
    [6]
    DONG X P, CUI J W, JIANG X H et al. , 2023. Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt in the northeastern Tibet Plateau[OL/J]. Journal of Geomechanics, DOI: 10.12090/j.issn.1006-6616.2023048. (in Chinese with English abstract)
    [7]
    GUO L Z, XUE Y Q, 1958. The pleistocene sediments of the lower reaches of the Fenho and the Sushui: their origin and bearings on the geomorphological evolution of these two rivers[J]. Quaternary Sciences, 1(1): 107-117. (in Chinese)
    [8]
    HAN H Y, MI F S, LIU H Y, 2001. Geomorphological structure in the Weihe Basin and neotectonic movement[J]. Journal of Seismological Research, 24(3): 251-257. (in Chinese with English abstract)
    [9]
    HAN H Y, ZHANG Y, YUAN Z X, 2002. The evolution of Weihe down-faulted basin and the movement of the fault blocks[J]. Journal of Seismological Research, 25(4): 362-368. (in Chinese with English abstract)
    [10]
    HAN X M, LIU F, ZHANG W T, et al. , 2015. Analyzing the variation characteristics of stress field in Hetao seismic belt using focal mechanism data[J]. Seismology and Geology, 37(4): 1030-1042. (in Chinese with English abstract)
    [11]
    HU J M, YAN J Y, CHENG Y, et al. , 2022. Geological records of late Cenozoic tectono-sedimentary-paleoclimatic events in China[J]. Geology and Resources, 31(3): 303-330. (in Chinese with English abstract)
    [12]
    HU X M, 1997. The change of fromer Fen river on EMEI platform[J]. Journal of Anhui Normal University (Natural Science), 20(2): 154-158. (in Chinese with English abstract)
    [13]
    HU X M, YANG J C, 2001. The evolution and its contributing factors of Linfen Basin since middle Quaternary[J]. Journal of Shanghai Teachers University (Natural Sciences), 30(3): 72-76. (in Chinese with English abstract)
    [14]
    HU X M, GUO J X, HU X Y, 2010. The development of Morpho-sediment of Quaternary in Fenhe River graben basins and the neotectonic movement[J]. Acta Geographica Sinica, 65(1): 73-81. (in Chinese with English abstract)
    [15]
    HU X M, CHEN M J, WANG D T, et al. , 2012. The Sequence difference in the times in the geomorphic-sedimentary evolution in the Fenwei graben basins during the middle-late Quaternary and its tectonic significance[J]. Quaternary Sciences, 32(5): 849-858. (in Chinese with English abstract)
    [16]
    HUANG T, LI Z H, LIU F, et al. , 2018. The current situation of desertification in the Hongsibu Basin, Ningxia, and its main geological controlling factors[J]. Journal of Geomechanics, 24(4): 505-514. (in Chinese with English abstract)
    [17]
    JIA L Y, ZHANG X J, YE P S, et al. , 2016. Development of the alluvial and lacustrine terraces on the northern margin of the Hetao Basin, Inner Mongolia, China: implications for the evolution of the Yellow River in the Hetao area since the late pleistocene[J]. Geomorphology, 263: 87-98. doi: 10.1016/j.geomorph.2016.03.034
    [18]
    JIA L Y, HU D G, WU H H, et al. , 2017. Yellow River terrace sequences of the Gonghe-Guide section in the northeastern Qinghai-Tibet: implications for plateau uplift[J]. Geomorphology, 295: 323-336. doi: 10.1016/j.geomorph.2017.06.007
    [19]
    JIANG F C, FU J L, WANG S B, et al. , 2007. Formation of the Yellow River, inferred from loess-palaeosol sequence in Mangshan and lacustrine sediments in Sanmen Gorge, China[J]. Quaternary International, 175(1): 62-70. doi: 10.1016/j.quaint.2007.03.022
    [20]
    JIN H L, LI M Q, SU Z Z, et al. , 2006. Climatic change reflected by Stratigraphical magnetic susceptibility in Salawusu River basin, North China since 220 ka BP[J]. Journal of Desert Research, 26(5): 680-686. (in Chinese with English abstract)
    [21]
    JIN H L, LI M Q, SU Z Z, et al. , 2007. Sedimentary age of strata in the Salawusu River Basin and climatic changing[J]. Acta Geologica Sinica, 81(3): 307-315. (in Chinese with English abstract)
    [22]
    LI S Z, YU S, ZHAO S J, et al. , 2013. Tectonic transition and plate reconstructions of the east Asian continental magin[J]. Marine Geology & Quaternary Geology, 33(3): 65-94. (in Chinese with English abstract)
    [23]
    LI S Z, CAO X Z, WANG G Z, et al. , 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract)
    [24]
    LI Y L, YANG J C, 1994. Environmental evolution of Yuncheng daline lake (Shanxi, China)[J]. Geographical Research, 13(1): 70-74. (in Chinese with English abstract)
    [25]
    LI Y L, YANG J C, SU Z Z, 1994. Neotectonic movement and palaeochannel evolution in Yuncheng Basin[J]. Earthquake Research in Shanxi(1): 3-6. (in Chinese with English abstract)
    [26]
    LI Z C, LI W H, LI Y X, et al. , 2015. Sedimentary facies of the Cenozoic in Weihe Basin[J]. Journal of Palaeogeography, 17(4): 529-540. (in Chinese with English abstract)
    [27]
    LI Z C, LI W H, LI Y X, et al. , 2016. Cenozoic stratigraphy and Paleoenvironments in the Weihe area, Shaanxi Province[J]. Journal of Stratigraphy, 40(2): 168-178. (in Chinese with English abstract)
    [28]
    LI Z H, JIANG B Y, DONG X P, et al. , 2020a. Collapses of loess at the front of the Emei tableland in the Yuncheng basin and their major geological controlling factors[J]. Coal Geology & Exploration, 48(2): 171-178. (in Chinese with English abstract)
    [29]
    LI Z H, CUI J W, LI C Z, et al. , 2020b. Late Pleistocene sedimentary features and the palaeoclimatic background in Hongsibao Basin[J]. Coal Geology & Exploration, 48(6): 233-242. (in Chinese with English abstract)
    [30]
    LI Z Y, LI Y X, LI W H, et al. , 2021. Sedimentary characteristics of Paleogene-Neogene in Fenwei Basin[J]. Chinese Journal of Geology, 56(4): 1120-1133. (in Chinese with English abstract)
    [31]
    LIN X D, YUAN H Y, XU P, et al. , 2017. Zonational characteristics of earthquake focal mechanism solutions in North China[J]. Chinese Journal of Geophysics, 60(12): 4589-4622. (in Chinese with English abstract)
    [32]
    LIU B H, WU F, ZHANG X J, et al., 2023. Late Pleistocene element geochemistry and its implications for environmental change in Hongsibu Basin, northeastern margin of Qinghai-Tibet Plateau[J/OL].Geological Bulletin of China: 1-16[2023-08-11]. http://kns.cnki.net/kcms/detail/11.4648.P.20230811.1039.002.html. (in Chinese with English abstract)
    [33]
    LIU S D, LI G K, LI Y X, et al. , 1988. Discussion on the formation and evolution of the Yellow River from the characteristics of Quaternary sediments in the eastern plain of Henan Province[J]. Henan Geology, 6(2): 20-24. (in Chinese)
    [34]
    LIU Y S, HU Z C, GAO S, et al. , 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
    [35]
    LIU Y S, GAO S, HU Z C, et al. , 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
    [36]
    LIU Y S, HU Z C, ZONG K Q, et al. , 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
    [37]
    LUDWIG K R, 2003. ISOPLOT 3.00: A geochronological toolkit for Microsoft excel[M]. Berkeley, California: Berkeley Geochronology Center: 39.
    [38]
    MA Z Y, DONG X P, ZHANG Q, et al. , 2020. Sedimentary response to the uplift of the Liupan Shan since the Late Pleistocene and its environmental effects[J]. Coal Geology & Exploration, 48(5): 152-164. (in Chinese with English abstract)
    [39]
    PAN B T, WANG J P, GAO H S, et al. , 2005. Paleomagnetic dating of the topmost terrace in Kouma, Henan and its indication to the Yellow River’s running through Sanmen Gorges[J]. Chinese Science Bulletin, 50(7): 657-664. doi: 10.1360/03wd0290
    [40]
    QI Y, XU H B, ZHANG J X, et al. , 2011. Geochemistry, geochronology and geological significance of Gufengshan granodiorite in Linfen Grabben basin[J]. Geological Review, 57(4): 565-573. (in Chinese with English abstract)
    [41]
    QI Y, LUO J H, WU J D, et al. , 2016. Geochemical and Sr-Nd-Pb isotopic composition of the Canfang and Gufengshan granodiorite plutons in central-southern North China[J]. Acta Petrologica Sinica, 32(7): 2015-2028. (in Chinese with English abstract)
    [42]
    QIN B C, FANG W X, ZHANG J G, et al. , 2021. Quaternary sedimentary sequence and sedimentary environment restoration in the Jinzhong Basin, Fenhe Rift Valley[J]. Journal of Geomechanics, 27 (6): 1035-1050. (in Chinese with English abstract)
    [43]
    QIU D W, GONG W B, YAN J Y, et al. , 2021. Geological environment changes during the late Pleistocene-Holocene on the E'mei tableland in the northern Yuncheng basin, Shanxi Province: implications for the distribution of human settlements[J]. Journal of Geomechanics, 27(2): 326-338. (in Chinese with English abstract)
    [44]
    SHANG Y, PRINS M A, BEETS C J, et al. , 2018. Aeolian dust supply from the Yellow River floodplain to the Pleistocene loess deposits of the Mangshan Plateau, central China: Evidence from zircon U-Pb age spectra[J]. Quaternary Science Reviews, 182: 131-143. doi: 10.1016/j.quascirev.2018.01.001
    [45]
    SUN J M, XU L L, 2007. River terraces in the Fenwei Graben, Central China, and the relation with the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Sciences, 27(1): 20-26. (in Chinese with English abstract)
    [46]
    SUO Y H, LI S Z, DAI L M, et al. , 2012. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins[J]. Acta Petrologica Sinica, 28(8): 2602-2618. (in Chinese with English abstract)
    [47]
    SUO Y H, LI S Z, CAO X Z, et al. , 2017. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 24(4): 249-267. (in Chinese with English abstract)
    [48]
    WANG Q, LI C G, TIAN G Q, et al. , 2000. Great changes of surface system and tectonic setting of salt lake formation in Yuncheng Basin since 7.1 Ma[J]. Science in China (Series D), 30(4): 420-428. (in Chinese)
    [49]
    WIEDENBECK M, ALLÉ P, CORFU F, et al. , 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
    [50]
    WU M J, LIN X D, XU P, 2011. Analysis of focal mechnism and tectonic stress field features in northern part of north China[J]. Journal of Geodesy and Geodynamics, 31(5): 39-43. (in Chinese with English abstract)
    [51]
    WU X H, JIANG F C, WANG S M, et al. , 1998. On problem of the Yellow River passing through the Sanmen Gorge and flowing east into sea[J]. Quaternary Sciences, 18(2): 188. (in Chinese with English abstract)
    [52]
    XING Z Y, ZHAO B, TU M Y, et al. , 2005. The formation of the Fenwei rift valley[J]. Earth Science Frontiers, 12(2): 247-262. (in Chinese with English abstract)
    [53]
    XU H L, WANG C D, 2010. Preliminary study on the relationship between the Fluvial geomorphology and the Neotectonic movement in Yellow River in Zhengzhou prehistoric times[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 31(6): 101-106. (in Chinese with English abstract)
    [54]
    YAN J Y, 2021. Late Cenozoic tectonic-sedimenatary, uplifting and denudational process of the Yuncheng Basin and northern Gushan Mountain[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    [55]
    YAN J Y, HU J M, WANG D M, et al. , 2021. The critical geological events in the Huang-Huai-Hai Plain during the Late Cenozoic[J]. Geological Bulletin of China, 40(5): 623-648. (in Chinese with English abstract)
    [56]
    YANG S Y, CAI J G, LI C X, et al. , 2001. New discussion about the run-through time of the Yellow River[J]. Marine Geology & Quaternary Geology, 21(2): 15-20. (in Chinese with English abstract)
    [57]
    YAO W B, JI X Q, ZHAO Z, 2004. Sedimental features of loess in Yuncheng basin[J]. Shanxi Architecture, 30(9): 23-24. (in Chinese with English abstract)
    [58]
    ZHANG L, LIU J Q, QIN X G, 2018. The environmental effects and mechanism of the Yellow River flooding into the Huaibei Plain during Quaternary: a brief review[J]. Quaternary Sciences, 38(2): 441-453. (in Chinese with English abstract)
    [59]
    ZHONG Q M, SHAO B, HOU G T, 2022. Numerical simulation and analysis of lithospheric stress field in Fenwei graben[J]. Progress in Geophysics, 37(1): 152-163. (in Chinese with English abstract)
    [60]
    ZHOU Q S, ZHANG X J, YE P S, et al. , 2017. The distribution and period division of Holocene palaeo channels of the Yellow River in Hetao area[J]. Journal of Geomechanics, 23(3): 339-347. (in Chinese with English abstract)
    [61]
    安芷生, 刘晓东, 2000. 东亚季风气候的历史与变率[J]. 科学通报, 45(3): 238-249. doi: 10.3321/j.issn:0023-074X.2000.03.002
    [62]
    陈兴强, 施炜, 胡健民, 等, 2016. 华北临汾盆地中部柴庄上新世-更新世剖面沉积学特征及其构造意义[J]. 地质力学学报, 22(4): 984-993.
    [63]
    崔加伟, 李振宏, 刘锋, 等, 2018. 宁夏红寺堡盆地萨拉乌苏组地层时代重新厘定及意义[J]. 地质力学学报, 24(2): 283-292.
    [64]
    崔效锋, 谢富仁, 李瑞莎, 等, 2010. 华北地区构造应力场非均匀特征与煤田深部应力状态[J]. 岩石力学与工程学报, 29(S1): 2755-2761.
    [65]
    董晓朋, 李振宏, 崔加伟, 等, 2022. 宁夏清水河中上游发现末次冰期最盛期冰缘遗迹群[J]. 地球科学与环境学报, 44(3): 524-534.
    [66]
    董晓朋, 李振宏, 井向辉, 等, 2023. 青藏高原东北缘弧形构造带新生代地层沉积序列特征及年代学研究进展[OL/J]. 地质力学学报,DOI: 10.12090/j.issn.1006-6616.2023048
    [67]
    郭令智, 薛禹群, 1958. 从第四纪沉积物讨论山西汾河与涑水在地貌演化上的关系[J]. 第四纪研究, 1(1): 107-117.
    [68]
    韩恒悦, 米丰收, 刘海云, 2001. 渭河盆地带地貌结构与新构造运动[J]. 地震研究, 24(3): 251-257.
    [69]
    韩恒悦, 张逸, 袁志祥, 2002. 渭河断陷盆地带的形成演化及断块运动[J]. 地震研究, 25(4): 362-368.
    [70]
    韩晓明, 刘芳, 张文韬, 等, 2015. 基于震源机制资料分析河套地震带的应力场变化特征[J]. 地震地质, 37(4): 1030-1042. doi: 10.3969/j.issn.0253-4967.2015.04.008
    [71]
    胡健民, 闫纪元, 程瑜, 等, 2022. 中国晚新生代构造-沉积-古气候事件的地质记录[J]. 地质与资源, 31(3): 303-330.
    [72]
    胡晓猛, 1997. 古汾河在峨嵋台地上的变迁[J]. 安徽师范大学学报(自然科学版), 20(2): 154-158.
    [73]
    胡小猛, 杨景春, 2001. 临汾盆地中更新世中晚期以来的演化历史及成因分析[J]. 上海师范大学学报(自然科学版), 30(3): 72-76.
    [74]
    胡小猛, 郭家秀, 胡向阳, 2010. 汾河地堑湖盆第四纪地貌-沉积特征的构造控制[J]. 地理学报, 65(1): 73-81.
    [75]
    胡小猛, 陈美君, 王杜涛, 等, 2012. 汾渭地堑系列湖盆第四纪中晚期地貌与沉积阶段性演化的时间序次差异及其构造指示意义[J]. 第四纪研究, 32(5): 849-858.
    [76]
    黄婷, 李振宏, 刘锋, 等, 2018. 宁夏红寺堡盆地地表沙漠化现状及其地质主控因素[J]. 地质力学学报, 24(4): 505-514.
    [77]
    靳鹤龄, 李明启, 苏志珠, 等, 2006. 220 ka 以来萨拉乌苏河流域地层磁化率与气候变化[J]. 中国沙漠, 26(5): 680-686.
    [78]
    靳鹤龄, 李明启, 苏志珠, 等, 2007. 萨拉乌苏河流域地层沉积时代及其反映的气候变化[J]. 地质学报, 81(3): 307-315.
    [79]
    李三忠, 余珊, 赵淑娟, 等, 2013. 东亚大陆边缘的板块重建与构造转换[J]. 海洋地质与第四纪地质, 33(3): 65-94.
    [80]
    李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报, 25(5): 642-677. doi: 10.12090/j.issn.1006-6616.2019.25.05.060
    [81]
    李有利, 杨景春, 1994. 运城盐湖沉积环境演化[J]. 地理研究, 13(1): 70-74.
    [82]
    李有利, 杨景春, 苏宗正, 1994. 运城盆地新构造运动与古河道演变[J]. 山西地震(1): 3-6.
    [83]
    李智超, 李文厚, 李永项, 等, 2015. 渭河盆地新生代沉积相研究[J]. 古地理学报, 17(4): 529-540.
    [84]
    李智超, 李文厚, 李永项, 等, 2016. 陕西渭河地区新生代地层及沉积环境演化[J]. 地层学杂志, 40(2): 168-178.
    [85]
    李兆雨, 李永项, 李文厚, 等, 2021. 汾渭盆地古近系-新近系沉积特征[J]. 地质科学, 56(4): 1120-1133.
    [86]
    李振宏, 姜博宇, 董晓朋, 等, 2020a. 运城盆地峨眉台地前缘黄土塌陷现状及地质主控因素[J]. 煤田地质与勘探, 48(2): 171-178.
    [87]
    李振宏, 崔加伟, 李朝柱, 等, 2020b. 红寺堡盆地晚更新世沉积特征及古气候背景[J]. 煤田地质与勘探, 48(6): 233-242.
    [88]
    林向东, 袁怀玉, 徐平, 等, 2017. 华北地区地震震源机制分区特征[J]. 地球物理学报, 60(12): 4589-4622.
    [89]
    刘博华, 吴芳, 张绪教, 等, 2023. 青藏高原东北缘红寺堡盆地晚更新世沉积物元素地球化学特征及其环境指示意义[J/OL]. 地质通报: 1-16[2023-08-11]. http://kns.cnki.net/kcms/detail/11.4648.P.20230811.1039.002.html.
    [90]
    刘书丹, 李广坤, 李玉信, 等, 1988. 从河南东部平原第四纪沉积物特征探讨黄河的形成与演变[J]. 河南地质, 6(2): 20-24.
    [91]
    马兆颖, 董晓朋, 张庆, 等, 2020. 六盘山晚更新世以来抬升过程沉积响应及环境效应[J]. 煤田地质与勘探, 48(5): 152-164.
    [92]
    潘保田, 王均平, 高红山, 等, 2005. 河南扣马黄河最高级阶地古地磁年代及其对黄河贯通时代的指示[J]. 科学通报, 50(3): 255-261.
    [93]
    齐玥, 徐鸿博, 张竞雄, 等, 2011. 临汾断陷盆地孤峰山花岗闪长岩的地球化学和年代学及其地质意义[J]. 地质论评, 57(4): 565-573.
    [94]
    齐玥, 罗金海, 巫嘉德, 等, 2016. 华北中南部蚕坊和孤峰山花岗闪长岩体的地球化学特征和Sr-Nd-Pb同位素组成[J]. 岩石学报, 32(7): 2015-2028
    [95]
    秦帮策, 方维萱, 张建国, 等, 2021. 汾河裂谷晋中盆地内第四纪沉积序列与沉积环境恢复[J]. 地质力学学报, 27 (6): 1035-1050.
    [96]
    仇度伟, 公王斌, 闫纪元, 等, 2021. 山西运城盆地北部峨嵋台地晚更新世-全新世地质环境变化及其对人类聚落分布的影响[J]. 地质力学学报, 27(2): 326-338.
    [97]
    孙继敏, 许立亮, 2007. 汾渭地堑的河流阶地对第四纪时期印度-欧亚板块碰撞带的构造响应[J]. 第四纪研究, 27(1): 20-26. doi: 10.3321/j.issn:1001-7410.2007.01.003
    [98]
    索艳慧, 李三忠, 戴黎明, 等, 2012. 东亚及其大陆边缘新生代构造迁移与盆地演化[J]. 岩石学报, 28(8): 2602-2618.
    [99]
    索艳慧, 李三忠, 曹现志, 等, 2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘, 24(4): 249-267.
    [100]
    王强, 李彩光, 田国强, 等, 2000. 7.1Ma以来运城盆地地表系统巨变及盐湖形成的构造背景[J]. 中国科学(D辑), 30(4): 420-428.
    [101]
    武敏捷, 林向东, 徐平, 2011. 华北北部地区震源机制解及构造应力场特征分析[J]. 大地测量与地球动力学, 31(5): 39-43.
    [102]
    吴锡浩, 蒋复初, 王苏民, 等, 1998. 关于黄河贯通三门峡东流入海问题[J]. 第四纪研究, 18(2): 188.
    [103]
    邢作云, 赵斌, 涂美义, 等, 2005. 汾渭裂谷系与造山带耦合关系及其形成机制研究[J]. 地学前缘, 12(2): 247-262.
    [104]
    徐海亮, 王朝栋, 2010. 史前郑州地区黄河河流地貌与新构造活动关系初探[J]. 华北水利水电学院学报, 31(6): 101-106.
    [105]
    闫纪元, 2021. 运城盆地及北侧孤山晚新生代构造-沉积与隆升-剥蚀过程研究[D]. 北京: 中国地质科学院.
    [106]
    闫纪元, 胡健民, 王东明, 等, 2021. 黄淮海平原晚新生代重大地质事件[J]. 地质通报, 40(5): 623-648.
    [107]
    杨守业, 蔡进功, 李从先, 等, 2001. 黄河贯通时间的新探索[J]. 海洋地质与第四纪地质, 21(2): 15-20. doi: 10.16562/j.cnki.0256-1492.2001.02.003
    [108]
    姚文兵, 季秀卿, 赵政, 2004. 运城盆地黄土沉积特征[J]. 山西建筑, 30(9): 23-24. doi: 10.3969/j.issn.1009-6825.2004.09.016
    [109]
    张磊, 刘嘉麒, 秦小光, 2018. 第四纪黄河入淮成因机制与环境效应的研究现状及存在问题[J]. 第四纪研究, 38(2): 441-453. doi: 10.11928/j.issn.1001-7410.2018.02.15
    [110]
    仲启蒙, 邵博, 侯贵廷, 2022. 汾渭地堑岩石圈的应力场数值模拟与分析[J]. 地球物理学进展, 37(1): 152-163.
    [111]
    周青硕, 张绪教, 叶培盛, 等, 2017. 河套地区全新世黄河古河道的分布及期次划分[J]. 地质力学学报, 23(3): 339-347. doi: 10.3969/j.issn.1006-6616.2017.03.002
  • 加载中

Catalog

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (417) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return