Volume 27 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
JIANG Fengyun, JI Lingyun, ZHAO Qiang, 2021. Numerical simulation of the present seismic risk of the HaiyuanLiupanshan fault zone. Journal of Geomechanics, 27 (2): 230-240. DOI: 10.12090/j.issn.1006-6616.2021.27.02.022
Citation: JIANG Fengyun, JI Lingyun, ZHAO Qiang, 2021. Numerical simulation of the present seismic risk of the HaiyuanLiupanshan fault zone. Journal of Geomechanics, 27 (2): 230-240. DOI: 10.12090/j.issn.1006-6616.2021.27.02.022

Numerical simulation of the present seismic risk of the HaiyuanLiupanshan fault zone

doi: 10.12090/j.issn.1006-6616.2021.27.02.022
Funds:

the Spark Programs of China Earthquake Administration XH20083

Seismic Tracking General Program of China Earthquake Administration 2020020203

More Information
  • Received: 2020-11-30
  • Revised: 2021-02-02
  • In this study, the orthotropic theory-based characterization of fault deformation behavior was made, with the ratio of the shear modulus parallel to fault plane to the shear modulus of surrounding media as the inversion parameters and the present-day crust horizontal movement velocity field observed by GPS near the Haiyuan-Liupanshan fault as the constrain. We built a 3D finite element model, using the genetic algorithm, to estimate the shear moduls distribution parallel to the Haiyuan-Liupanshan fault plane. The inversion results show that the shear modulus parallel to the Liupanshan fault plane is close to that of the surrounding media, and the seismic activities are sparsely distributed along the fault plane, reflecting a small deformation difference on both sides of the Liupanshan near the fault, which is similar to the situation of the Longmenshan fault before the Wenchuan Earthquake. The fault zone may be in a state of strong locking. The shear modulus parallel to the fault plane of the Hanyuan fault in the narrow sense is much smaller than that of the surrounding media, all below 0.4, and the shear modulus within 0~5 km is larger than that of the deep, which may reflect that the entire fault has still been in post-earthquake adjustment since the Haiyuan 8.5-magnitude earthquake in 1920. The shear modulus of the Jinqianghe, Maomaoshan and Laohushan faults in the western section is relatively low at the shallow section of the faults (0~5 km), while the shear modulus of 5~20 km is relatively high. Combined with the fault surface seismic activity distribution characteristics, it is considered that creep slips may exist in the shallow sections of the Jingqianghe and Maomaoshan faults; however, there is strain energy accumulation in the depth of 5~20 km, which has the background of strong earthquake. Seismic activity of the Laohushan fault is relatively intensive from the surface to the deep, and there may be creep through, with a small probability of strong earthquake.

     

  • loading
  • CHEN J H, LIU Q Y, LI S C, et al., 2005. Crust and upper mantle S-wave velocity structure across Northeastern Tibetan Plateau and Ordos block[J]. Chinese Journal of Geophysics, 48(2): 333-342. (in Chinese with English abstract) http://www.oalib.com/paper/1567657
    DUAN X B, 1997. Geographical distribution of earthquake focal depth in China[J]. Acta Seismologica Sinica, 19(6): 590-599. (in Chinese)
    FIALKO Y, SANDWELL D, AGNEW D, et al., 2002. Deformation on nearby faults induced by the 1999 hector mine earthquake[J]. Science, 297(5588): 1858-1862. doi: 10.1126/science.1074671
    GAUDEMER Y, TAPPONNIER P, MEYER P, et al., 1995. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the 'Tianzhu gap', on the western Haiyuan Fault, Gansu (China)[J]. Geophysical Journal International, 120(3): 599-645. doi: 10.1111/j.1365-246X.1995.tb01842.x
    HAO M, LI Y H, QING S L, 2017. Spatial and temporal distribution of slip rate deficit across Haiyuan-Liupan Shan Fault zone constrained by GPS data[J]. Seismology and Geology, 39(3): 471-484. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ201703003.htm
    HE J K, LU S J, WANG W M, 2013. Three-dimensional mechanical modeling of the GPS velocity field around the northeastern Tibetan plateau and surrounding regions[J]. Tectonophysics, 584: 257-266. doi: 10.1016/j.tecto.2012.03.025
    HERGERT T, HEIDBACH O, 2010. Slip-rate variability and distributed deformation in the Marmara Sea fault system[J]. Nature Geoscience, 3(2): 132-135. doi: 10.1038/ngeo739
    JIA S X, ZHANG X K, 2008. Study on the crust phases of deep seismicsounding experiments and fine crust structures in the northeast margin of Tibetan Plateau[J]. Chinese Journal of Geophysics, 51(5): 1431-1443. (in Chinese with English abstract) http://www.oalib.com/paper/1568190
    JOLIVET R, LASSERRE C, DOIN M P, et al., 2012. Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry[J]. Journal of Geophysical Research: Solid Earth, 117(B6): B06401. http://smartsearch.nstl.gov.cn/paper_detail.html?id=8389751782cfcae3829cbf7335ce8dd1
    LASKE G, MASTERS G, MA Z T, et al., 2013. Update on CRUST1.0-A 1-degree Global Model of Earth's Crust[Z]//EGU General Assembly 2013. Vienna, Austria.
    LI J Y, ZHANG J, LIU J F, et al., 2019. Crustal tectonic framework of china and its formation processes: constraints from stuctural deformation[J]. Journal of Geomechanics, 25(5): 678-698. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905006.htm
    LI Q, JIANG Z S, WU Y Q, et al., 2014. Inversion of locking and distribution of slip deficit in Haiyuan-Liupan fault zone using GPS data[J]. Geomatics and information Science of Wuhan University, 39(5): 575-580. (in Chinese with English abstract) http://www.researchgate.net/publication/286990679_Inversion_of_locking_and_distribution_of_slip_deficit_in_Haiyuan-Liupan_fault_zone_using_GPS_data
    LI Y C, SHAN X J, QU C Y, et al., 2016. Fault locking and slip rate deficit of the Haiyuan-Liupanshan fault zone in the northeastern margin of the Tibetan Plateau[J]. Journal of Geodynamics, 102: 47-57. doi: 10.1016/j.jog.2016.07.005
    LI Y J, CHEN L W, YE J Y, 2009. Application and development of numerical simulation in stress field evolvement and seismology[J]. Progress in Geophysics, 24(2): 418-431. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200902009.htm
    M7 Special Working Group, 2012. Study on the mid-to long-term potential of large earthquakes on the Chinese continent[M]. Beijing: Seismological Press. (in Chinese)
    MILDON Z K, ROBERTS G P, WALKER J P F, et al., 2019. Coulomb pre-stress and fault bends are ignored yet vital factors for earthquake triggering and hazard[J]. Nature Communications, 10: 2744. doi: 10.1038/s41467-019-10520-6
    Quark Studio, 2002. Finite element analysis basics ANSYS and MATLAB[M]. Beijing: Tsinghua University Press. (in Chinese)
    REINOZA C, JOUANNE F, AUDEMARD F A, et al., 2015. Geodetic exploration of strain along the El Pilar Fault in northeastern Venezuela[J]. Journal of Geophysical Research: Solid Earth, 120(3): 1993-2013. doi: 10.1002/2014JB011483
    SCHOLZ C H, 1990. The mechanics of earthquakes and faulting[M]. New York: Cambridge University Press.
    SCHOLZ C H, 1998. Earthquakes and friction laws[J]. Nature, 391(6662): 37-42. doi: 10.1038/34097
    SHEN Z K, WANG M, ZENG Y H, et al., 2015. Optimal interpolation of spatially discretized geodetic data[J]. Bulletin of the Seismological Society of America, 105(4): 2117-2127. doi: 10.1785/0120140247
    SHI F Q, SHAO Z G, ZHAN W, et al., 2018a. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 61(9): 3651-3663. (in Chinese with English abstract) http://www.researchgate.net/publication/329981106_Numerical_modeling_of_the_shear_modulus_and_stress_state_of_active_faults_in_the_northeastern_margin_of_the_Tibetan_plateau
    SHI F Q, ZHU L, LI Y J, et al., 2018b. Characterization of fault deformation behavior based on orthotropic theory[J]. Journal of Seismological Research, 41(1): 64-72. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201801008.htm
    WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental china derived from gps and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. doi: 10.1029/2019JB018774
    WANG S D, SHI Y Q, REN F W, 2018. Analysis and textual research of the seismogenic structure of the Qin-Long earthquake in 600 A. D[J]. Journal of Geomechanics, 24(2): 157-168. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201802062.htm
    XU X W, WU X Y, YU G H, et al., 2017. Seismo-Geological Signatures for Identifying M ≥ 7. 0 earthquake Risk areas and their premilimary application in mainland China[J]. Seismology and Geology, 39(2): 219-275. (in Chinese with English abstract)
    ZHANG G M, WANG S Y, LI L, et al., 2002. Focal depth research of earthquakes in Mainland China: implication for tectonics[J]. Chinese Science Bulletin, 47(12): 969-974. (in Chinese with English abstract) doi: 10.1007/BF02907562
    ZHANG H S, GAO R, TIAN X B, et al., 2015. Crustal S wave velocity beneath the northeastern Tibetan plateau inferred from teleseismic P wave receiver functions[J]. Chinese Journal of Geophysics, 58(11): 3982-3992. (in Chinese with English abstract) http://www.researchgate.net/publication/286875857_Crustal_Swave_velocity_beneath_the_northeastern_Tibetan_plateau_inferred_from_teleseismic_Pwave_receiver_functions
    ZHANG P Z, DENG Q D, ZHANG G M, et al., 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China Series D: Earth Sciences, 46(2): 13-24. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020414997685.html
    ZHANG P Z, DENG Q D, ZHANG Z Q, et al., 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia Sinica (Terrae), 43(10): 1607-1620. (in Chinese with English abstract) doi: 10.1360/zd-2013-43-10-1607
    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905007.htm
    陈九辉, 刘启元, 李顺成等, 2005. 青藏高原东北缘-鄂尔多斯地块地壳上地幔S波速度结构. 地球物理学报, 48(2): 333-342. doi: 10.3321/j.issn:0001-5733.2005.02.015
    段星北, 1997. 中国地震震源深度的地理分布[J]. 地震学报, 19(6): 590-599. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB706.004.htm
    郝明, 李煜航, 秦姗兰, 2017. 基于GPS数据的海原-六盘山断裂带滑动速率亏损时空分布[J]. 地震地质, 39(3): 471-484. doi: 10.3969/j.issn.0253-4967.2017.03.003
    嘉世旭, 张先康, 2008. 青藏高原东北缘深地震测深震相研究与地壳细结构[J]. 地球物理学报, 51(5): 1431-1443. doi: 10.3321/j.issn:0001-5733.2008.05.016
    夸克工作室, 2002. 有限元分析基础篇ANSYS与Matlab[M]. 北京: 清华大学出版社.
    李锦轶, 张进, 刘建峰, 等, 2019. 中国地壳结构构造与形成过程: 来自构造变形的约束[J]. 地质力学学报, 25(5): 678-698. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190505&journal_id=dzlxxb
    李强, 江在森, 武艳强, 等, 2014. 利用GPS资料反演海原-六盘山断裂带闭锁程度与滑动亏损分布[J]. 武汉大学学报·信息科学版, 39(5): 575-580. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201405014.htm
    李玉江, 陈连旺, 叶际阳, 2009. 数值模拟方法在应力场演化及地震科学中的研究进展[J]. 地球物理学进展, 24(2): 418-431. doi: 10.3969/j.issn.1004-2903.2009.02.007
    M7专项工作组, 2012. 中国大陆大地震中长期危险性研究[M]. 北京: 地震出版社.
    石富强, 邵志刚, 占伟, 等, 2018a. 青藏高原东北缘活动断裂剪切模量及应力状态数值模拟[J]. 地球物理学报, 61(9): 3651-3663. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201809014.htm
    石富强, 朱琳, 李玉江, 等, 2018b. 基于正交各向异性理论表征断层的变形行为[J]. 地震研究, 41(1): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201801008.htm
    王师迪, 师亚芹, 任凤文, 2018. 公元600年秦陇地震发震构造分析及考证研究[J]. 地质力学学报, 24(2): 157-168. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180202&journal_id=dzlxxb
    徐锡伟, 吴熙彦, 于贵华, 等, 2017. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质, 39(2): 219-275. doi: 10.3969/j.issn.0253-4967.2017.02.001
    张国民, 汪素云, 李丽, 等, 2002. 中国大陆地震震源深度及其构造含义[J]. 科学通报, 47(9): 663-668. doi: 10.3321/j.issn:0023-074X.2002.09.004
    张洪双, 高锐, 田小波, 等, 2015. 青藏高原东北缘地壳S波速度结构及其动力学含义: 远震接收函数提供的证据[J]. 地球物理学报, 58(11): 3982-3992. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511009.htm
    张培震, 邓起东, 张国民, 等, 2003. 中国大陆的强震活动与活动地块[J]. 中国科学: 地球科学, 33(S1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1001.htm
    张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310005.htm
    郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190506&journal_id=dzlxxb
  • 加载中

Catalog

    Figures(8)

    Article Metrics

    Article views (1007) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return