Volume 25 Issue 5
Oct.  2019
Turn off MathJax
Article Contents
LI Sanzhong, CAO Xianzhi, WANG Guangzeng, et al., 2019. MESO-CENOZOIC TECTONIC EVOLUTION AND PLATE RECONSTRUCTION OF THE PACIFIC PLATE. Journal of Geomechanics, 25 (5): 642-677. DOI: 10.12090/j.issn.1006-6616.2019.25.05.060
Citation: LI Sanzhong, CAO Xianzhi, WANG Guangzeng, et al., 2019. MESO-CENOZOIC TECTONIC EVOLUTION AND PLATE RECONSTRUCTION OF THE PACIFIC PLATE. Journal of Geomechanics, 25 (5): 642-677. DOI: 10.12090/j.issn.1006-6616.2019.25.05.060

MESO-CENOZOIC TECTONIC EVOLUTION AND PLATE RECONSTRUCTION OF THE PACIFIC PLATE

doi: 10.12090/j.issn.1006-6616.2019.25.05.060
More Information
  • Received: 2019-08-10
  • Revised: 2019-09-28
  • Published: 2019-10-28
  • The Pacific Plate is the largest oceanic plate on the Earth since Mesozoic, but its original mechanism, structure and tectonic evolution are still unclear. The complexity of the interior of the Pacific Plate has not been taken seriously. Large igneous provinces, seamount chains, oceanic micro-blocks, continental micro-blocks and mantle micro-blocks in the deeper mantle in or under the Pacific Plate are well developed. The geodynamic implications of these complex intraplate or sub-plate structures need to be solved urgently. Based on the latest results of plate reconstruction, this paper attempts to analyze its kinematic process and to reveal the formation and evolution mechanism of the Pacific Plate. The results show that the Pacific Plate originated from the RRR triple junction, but it was not a pure oceanic plate. Its accretion and evolutionary processes have undergone a non-Wilson cycle model. Its margins have undergone the incorporation of some exotic continental or oceanic micro-blocks, and some new oceanic micro-blocks have involved and appeared in its interior for various reasons. It made the Pacific Plate show as a fragmented mosaic pattern. The Pacific Plate recorded important tectonic events interacting with the adjacent tectonic plates. At about 55 Ma, it began to subduct under the East Asian continental margin, resulting in a short NW-SE-directed extension of the East Asian continental margin, which was subsequently jointly controlled by the Indian-Eurasian collisional dynamic system and the Pacific subduction dynamic system, and generally formed some pull-apart basins under the right-lateral dextral strike slipping. Then due to subduction retreat, this region gradually developed a double subduction system. The Pacific Plate also recorded the deep-shallow coupling process, and the Pacific LLSVP in the lower mantle played a decisive role in the distribution of the upper lithospheric micro-plates and large igneous provinces. In addition, volcanic chains or hotspots not only reveal plate movement, but also reflect the process of material exchange between deep and shallow parts, and seamounts also reveal the mantle flow under the Pacific Plate. The mantle circulation is not a single convective cell, and the diversity of its convective pattern needs to be further studied.

     

  • loading
  • [1]
    朱日祥, 徐义刚, 朱光, 等.华北克拉通破坏[J].中国科学:地球科学, 2012, 42(8):1135-1159. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200804016

    ZHU Rixiang, XU Yigang, Zhu Guang, et al. Destruction of the North China craton[J]. Science China Earth Sciences, 2012, 55(10):1565-1587. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200804016
    [2]
    吴福元, 徐义刚, 朱日祥, 等.克拉通岩石圈减薄与破坏[J].中国科学:地球科学, 2014, 44(11):2358-2372. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200806001

    WU Fuyuan, XU Yigang, ZHU Rixiang, et al. Thinning and destruction ofthe cratonic lithosphere:A global perspective[J]. Science China Earth Sciences, 2014, 57(12):2878-2890. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200806001
    [3]
    朱日祥, 徐义刚.西太平洋板块俯冲与华北克拉通破坏[J].中国科学:地球科学, 2019, 49(9):1346-1356, doi: 10.1360/N072018-00282.

    ZHU Rixiang, XU Yigang. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 62(9):1340-1350. doi: 10.1360/N072018-00282
    [4]
    李三忠, 赵淑娟, 索艳慧, 等.区域海底构造(上、中、下)[M].北京:科学出版社, 2019.

    LI Sanzhong, ZHAO Shujuan, SUO Yanhui, et al. Regional submarine tectonics (Volume 1-3)[M]. Beijing:Science Press, 2019. (in Chinese)
    [5]
    BOSCHMAN L M, VAN HINSBERGEN D J J. On the enigmatic birth of the Pacific plate within the Panthalassa Ocean[J]. Science Advances, 2016, 2(7):e1600022. doi: 10.1126/sciadv.1600022
    [6]
    MVLLER R D, SETON M, ZAHIROVIC S, et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 2016, 44:107-138. doi: 10.1146/annurev-earth-060115-012211
    [7]
    WESSEL P, KROENKE L W. The geometric relationship between hot spots and seamounts:implications for Pacific hot spots[J]. Earth and Planetary Science Letters, 1998, 158(1-2):1-18. doi: 10.1016/S0012-821X(98)00043-0
    [8]
    TORSVIK T H, COCKS L R M. Earth history and palaeogeography[M]. Cambridge:Cambridge University Press, 2017:1-317.
    [9]
    HARRISON L N, WEIS D, GARCIA M O. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics[J]. Earth and Planetary Science Letters, 2017, 463:298-309. doi: 10.1016/j.epsl.2017.01.027
    [10]
    WILSON J T. Evidence from islands on the spreading of ocean floors[J]. Nature, 1963, 197(4867):536-538. doi: 10.1038/197536a0
    [11]
    MORGAN J W, LOVERING J F. Rhenium and osmium abundances in some igneous and metamorphic rocks[J]. Earth and Planetary Science Letters, 1968, 3:219-224. doi: 10.1016-0012-821X(67)90041-6/
    [12]
    COURTILLOT V, DAVAILLE A, BESSE J, et al. Three distinct types of hotspots in the earth's mantle[J]. Earth and Planetary Science Letters, 2003, 205(3-4):295-308. doi: 10.1016/S0012-821X(02)01048-8
    [13]
    MONTELLI R, NOLET G, DAHLEN F A, et al. Finite-frequency tomography reveals a variety of plumes in the mantle[J]. Science, 2004, 303(5656):338-343. doi: 10.1126/science.1092485
    [14]
    FREY F A, GARCIA M O, WISE W S, et al. The evolution of Mauna Kea Volcano, Hawaii:petrogenesis of tholeiitic and alkalic basalts[J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B9):14347-14375. doi: 10.1029/91JB00940
    [15]
    HAURI E H. Major-element variability in the Hawaiian mantle plume[J]. Nature, 1996, 382(6590):415-419. doi: 10.1038/382415a0
    [16]
    RIBE N M, CHRISTENSEN U R. The dynamical origin of Hawaiian volcanism[J]. Earth and Planetary Science Letters, 1999, 171(4):517-531. doi: 10.1016/S0012-821X(99)00179-X
    [17]
    WOLFE C J, SOLOMON S C, LASKE G, et al. Mantle shear-wave velocity structure beneath the Hawaiian hot spot[J]. Science, 2009, 326(5958):1388-1390. doi: 10.1126/science.1180165
    [18]
    DAVIES G F.地幔柱存在的依据[J].科学通报, 2005, 50(17):1801-1813. http://d.old.wanfangdata.com.cn/Periodical/kxtb200517002

    DAVIES G F. A case for mantle plume[J]. Chinese Science Bulletin, 2005, 50(15):1541-1554. http://d.old.wanfangdata.com.cn/Periodical/kxtb200517002
    [19]
    COFFIN M F, ELDHOLM O. Large igneous provinces:Crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32(1):1-36. http://cn.bing.com/academic/profile?id=94181276187e79f54e554cbc6ef131e1&encoded=0&v=paper_preview&mkt=zh-cn
    [20]
    SHETH H C. 'Large Igneous Provinces (LIPs)':Definition, recommended terminology, and a hierarchical classification[J]. Earth-Science Reviews, 2007, 85(3-4):117-124. doi: 10.1016/j.earscirev.2007.07.005
    [21]
    BRYAN S E, ERNST R E. Revised definition of Large Igneous Provinces (LIPs)[J]. Earth-Science Reviews, 2008, 86(1-4):175-202. doi: 10.1016/j.earscirev.2007.08.008
    [22]
    SHARP W D, CLAGUE D A. 50-Ma initiation of Hawaiian-emperor bend records major change in pacific plate motion[J]. Science, 2006, 313(5791):1281-1284. doi: 10.1126/science.1128489
    [23]
    SHAFER J T, NEAL C R, REGELOUS M. Petrogenesis of Hawaiian postshield lavas:Evidence from Nintoku Seamount, Emperor Seamount Chain[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(5):Q05L09.
    [24]
    TARDUNO J A, DUNCAN R A, SCHOLL D W, et al. The emperor seamounts:southward motion of the Hawaiian hotspot plume in earth's mantle[J]. Science, 2003, 301(5636):1064-1069. doi: 10.1126/science.1086442
    [25]
    CLAGUE D A, DALRYMPLE G B. Volcanism in Hawaii[M]. Hawaiian Volcano Observatory, 1987, 1-54.
    [26]
    NORTON I O. Plate motions in the North Pacific:The 43 Ma nonevent[J]. Tectonics, 1995, 14(5):1080-1094. doi: 10.1029/95TC01256
    [27]
    O'CONNOR J M, HOERNLE K, MVLLER R D, et al. Deformation-related volcanism in the Pacific ocean linked to the Hawaiian-emperor bend[J]. Nature Geoscience, 2015, 8(5):393-397. doi: 10.1038/ngeo2416
    [28]
    WHITTAKER J M, MVLLER R D, LEITCHENKOV G, et al. Major Australian-Antarctic plate reorganization at Hawaiian-Emperor bend time[J]. Science, 2007, 318(5847):83-86. doi: 10.1126/science.1143769
    [29]
    TAYLOR B. The single largest oceanic plateau:Ontong Java-Manihiki-Hikurangi[J]. Earth and Planetary Science Letters, 2006, 241(3-4):372-380. doi: 10.1016/j.epsl.2005.11.049
    [30]
    CONDIE K C. Mantle plumes and their record in earth history[M]. Cambridge:Cambridge University Press, 2001.
    [31]
    PETTERSON M G, NEAL C R, MAHONEY J J, et al. Structure and deformation of north and central Malaita, Solomon Islands:tectonic implications for the Ontong Java Plateau-Solomon arc collision, and for the fate of oceanic plateaus[J]. Tectonophysics, 1997, 283(1-4):1-33. doi: 10.1016/S0040-1951(97)00206-0
    [32]
    CASTILLO P R, PRINGLE M S, CARLSON R W. East Mariana Basin tholeiites:Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?[J]. Earth and Planetary Science Letters, 1994, 123(1-3):139-154. doi: 10.1016/0012-821X(94)90263-1
    [33]
    GLADCZENKO T P, COFFIN M F, ELDHOLM O. Crustal structure of the Ontong Java Plateau:modeling of new gravity and existing seismic data[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B10):22711-22729. doi: 10.1029/97JB01636
    [34]
    CLOUARD V, BONNEVILLE A. How many Pacific hotspots are fed by deep-mantle plumes?[J]. Geology, 2002, 29(8):695-698. http://cn.bing.com/academic/profile?id=4ee723e6257e8280d457b661cf53a69f&encoded=0&v=paper_preview&mkt=zh-cn
    [35]
    GÉLI L, ASLANIAN D, OLIVET J L, et al. Location of Louisville hotspot and origin of Hollister Ridge:geophysical constraints[J]. Earth and Planetary Science Letters, 1998, 164(1-2):31-40. doi: 10.1016/S0012-821X(98)00217-9
    [36]
    MAHONEY J J, SPENCER K J. Isotopic evidence for the origin of the Manihiki and Ontong Java oceanic plateaus[J]. Earth and Planetary Science Letters, 1991, 104(2-4):196-210. doi: 10.1016/0012-821X(91)90204-U
    [37]
    GELDMACHER J, VAN DEN BOGAARD P, HEYDOLPH K, et al. The age of Earth's largest volcano:Tamu Massif on Shatsky Rise (northwest Pacific Ocean)[J]. International Journal of Earth Sciences, 2014, 103(8):2351-2357. doi: 10.1007/s00531-014-1078-6
    [38]
    SAGER W W. What built Shatsky Rise, a mantle plume or ridge tectonics?[M]//FOULGER G R, NATLAND J H, PRESNALL D C, et al. Plates, Plumes and Paradigms. Princeton: Geological Society of America, 2005, 388: 721-733.
    [39]
    SAGER W W, ZHANG J C, KORENAGA J, et al. An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean[J]. Nature Geoscience, 2013, 6(11):976-981. doi: 10.1038/ngeo1934
    [40]
    HEYDOLPH K, MURPHY D T, GELDMACHER J, et al. Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific):Insights from Nd, Pb and Hf isotopes[J]. Lithos, 2014, 200-201:49-63. doi: 10.1016/j.lithos.2014.03.031
    [41]
    MAHONEY J J, DUNCAN R A, TEJADA M L G, et al. Jurassic-Cretaceous boundary age and mid-ocean-ridge-type mantle source for Shatsky Rise[J]. Geology, 2005, 33(3):185-188. doi: 10.1130/G21378.1
    [42]
    SAGER W W, SANO T, GELDMACHER J, et al. IODP Expedition 324:ocean drilling at shatsky rise gives clues about oceanic plateau formation[J]. Scientific Drilling, 2011, 12:24-31. doi: 10.5194/sd-12-24-2011
    [43]
    SAGER W W, HANDSCHUMACHER D W, HILDE T W C, et al. Tectonic evolution of the northern Pacific plate and Pacific-Farallon Izanagi triple junction in the late Jurassic and early cretaceous (M21-M10)[J]. Tectonophysics, 1988, 155(1-4):345-364. doi: 10.1016/0040-1951(88)90274-0
    [44]
    DAVAILLE A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle[J]. Nature, 1999, 402(6763):756-760. doi: 10.1038/45461
    [45]
    NATLAND J H. The progression of volcanism in the Samoan linear volcanic chain[J]. American Journal of Science, 1980, 280A:709-735.
    [46]
    FAUL U H, JACKSON I. The seismological signature of temperature and grain size variations in the upper mantle[J]. Earth and Planetary Science Letters, 2005, 234(1-2):119-134. doi: 10.1016/j.epsl.2005.02.008
    [47]
    STIXRUDE L, LITHGOW-BERTELLONI C. Mineralogy and elasticity of the oceanic upper mantle:Origin of the low-velocity zone[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B3):B03204.
    [48]
    PRIESTLEY K, MCKENZIE D. The thermal structure of the lithosphere from shear wave velocities[J]. Earth and Planetary Science Letters, 2006, 244(1-2):285-301. doi: 10.1016/j.epsl.2006.01.008
    [49]
    KARATO S I, JUNG H. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle[J]. Earth and Planetary Science Letters, 1998, 157(3-4):193-207. doi: 10.1016/S0012-821X(98)00034-X
    [50]
    BALLMER M D, VAN HUNEN J, ITO G, et al. Non-hotspot volcano chains originating from small-scale sublithospheric convection[J]. Geophysical Research Letters, 2007, 34(23):L23310. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028232499/
    [51]
    BONNEVILLE A, DOSSO L, HILDENBRAND A. Temporal evolution and geochemical variability of the South Pacific superplume activity[J]. Earth and Planetary Science Letters, 2006, 244(1-2):251-269. doi: 10.1016/j.epsl.2005.12.037
    [52]
    MCNUTT M K. Superswells[J]. Reviews of Geophysics, 1998, 36(2):211-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/98RG00255
    [53]
    BALLMER M D, ITO G, VAN HUNEN J, et al. Small-scale sublithospheric convection reconciles geochemistry and geochronology of 'Superplume' volcanism in the western and south Pacific[J]. Earth and Planetary Science Letters, 2010, 290(1-2):224-232. doi: 10.1016/j.epsl.2009.12.025
    [54]
    Davis A S, Gray L B, Clague D A, et al. The Line Islands revisited:New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(3):1018, doi: 10.1029/2001GC000190.
    [55]
    BURKE K, TORSVIK T H. Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep mantle[J]. Earth and Planetary Science Letters, 2004, 227(3-4):531-538. doi: 10.1016/j.epsl.2004.09.015
    [56]
    LI S Z, YU S, SUO Y H, et al. Orientation of joints and arrangement of solid inclusions in fibrous veins in the Shatsky Rise, NW Pacific:implications for crack-seal mechanisms and stress fields[J]. Geological Journal, 2016, 51(S1):562-578. http://cn.bing.com/academic/profile?id=7699eec7a41789012268e3918a7aeb6e&encoded=0&v=paper_preview&mkt=zh-cn
    [57]
    MADRIGAL P, GAZEL E, FLORES K E, et al. Record of massive upwellings from the Pacific large low shear velocity province[J]. Nature Communication, 2016, 7:13309. doi: 10.1038/ncomms13309
    [58]
    ANDERSON D L. The new theory of the earth[M]. Cambridge:Cambridge University Press, 2007:1-384.
    [59]
    SAGER W W, HUANG Y M, TOMINAGA M, et al. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies[J]. Nature Geoscience, 2019, 12(8):661-666. doi: 10.1038/s41561-019-0390-y
    [60]
    MANN P, TAIRA A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone[J]. Tectonophysics, 2004, 389(3-4):137-190. doi: 10.1016/j.tecto.2003.10.024
    [61]
    ATWATER T, STOCK J. Pacific-North America plate tectonics of the Neogene southwestern United States:An update[J]. International Geology Review, 1998, 40(5):375-402. doi: 10.1080/00206819809465216
    [62]
    LIU X, ZHAO D P, LI S Z, et al. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications[J]. Earth and Planetary Science Letters, 2017, 464:166-174. doi: 10.1016/j.epsl.2017.02.024
    [63]
    LI S Z, SUO Y H, LI X Y, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the paleo-pacific plate[J]. Earth-Science Reviews, 2019, 192:91-137. doi: 10.1016/j.earscirev.2019.03.003
    [64]
    SIMMONS N A, MYERS S C, JOHANNESSON G, et al. Evidence for long-lived subduction of an ancient tectonic plate beneath the southern Indian Ocean[J]. Geophysical Research Letters, 2015, 42(21):9270-9278. doi: 10.1002/2015GL066237
    [65]
    WU L, KRAVCHINSKY V A. Derivation of paleolongitude from the geometric parametrization of apparent polar wander path:Implication for absolute plate motion reconstruction[J]. Geophysical Research Letters, 2014, 41(13):4503-4511. doi: 10.1002/2014GL060080
    [66]
    YANG Y T. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific[J]. Earth-Science Reviews, 2013, 126:96-115. doi: 10.1016/j.earscirev.2013.07.010
    [67]
    VAN DER MEER D G, TORSVIK T H, SPAKMAN W, et al. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure[J]. Nature Geoscience, 2012, 5(3):215-219. doi: 10.1038/ngeo1401
    [68]
    ENGEBRETSON D C, COX A, GORDON R G. Relative motions between oceanic and continental plates in the Pacific basin[M]//ENGEBRETSON D C, COX A, GORDON R G. Relative Motions Between Oceanic and Continental Plates in the Pacific Basin. Boulder, Colo.: Geological Society of America, 1985, 206: 1-59.
    [69]
    BURKE K, STEINBERGER B, TORSVIK T H, et al. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary[J]. Earth and Planetary Science Letters, 2008, 265(1-2):49-60. doi: 10.1016/j.epsl.2007.09.042
    [70]
    李阳, 李三忠, 郭玲莉, 等.拆离型微地块:洋陆转换带和洋中脊变形机制[J].大地构造与成矿学, 2019, 43(4):779-794. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201904011

    LI Yang, LI Sanzhong, GUO Lingli, et al. Detachment-derived micro-blocks:new insights for the deformation mechanism of the ocean-continent transition and the mid-ocean ridge[J]. Geotectonica et Metallogenia, 2019, 43(4):779-794. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201904011
    [71]
    刘金平, 李三忠, 索艳慧, 等.残生微洋块:俯冲消减系统下盘的复杂演化[J].大地构造与成矿学, 2019, 43(4):762-778. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201904010

    LIU Jinping, LI Sanzhong, SUO Yanhui, et al. Subduction-derived oceanic micro-block:complex evolution of footwall in subduction system[J]. Geotectonica et Metallogenia, 2019, 43(4):762-778. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201904010
    [72]
    孟繁, 李三忠, 索艳慧, 等.跃生型微地块:离散型板块边界的复杂演化[J].大地构造与成矿学, 2019, 43(4):644-664. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201904003.htm

    MENG Fan, LI Sanzhong, SUO Yanhui, et al. Ridge jumping-derived micro-blocks:Unravelling a complex evolutionary process for divergent plate boundaries[J]. Geotectonica et Metallogenia, 2019, 43(4):644-664. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DGYK201904003.htm
    [73]
    牟墩玲, 李三忠, 索艳慧, 等.裂生微地块构造特征及成因模式:来自西太平洋弧后扩张作用的启示[J].大地构造与成矿学, 2019, 43(4):665-677. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201904004.htm

    MU Dunling, LI Sanzhong, SUO Yanhui, et al. Tectonic and geodynamic mechanism of back-arc-rifting derived micro-blocks:insights fromback-arc spreading in the west pacific[J]. Geotectonica et Metallogenia, 2019, 43(4):665-677. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DGYK201904004.htm
    [74]
    汪刚, 李三忠, 姜素华, 等.增生型微地块的成因模式及演化[J].大地构造与成矿学, 2019, 43(4):745-761. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201904009

    WANG Gang, LI Sanzhong, JIANG Suhua, et al. Formation mechanisms and evolution of accretion-derived micro-blocks[J]. Geotectonica et Metallogenia, 2019, 43(4):745-761. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201904009
    [75]
    王光增, 李三忠, 索艳慧, 等.转换型微板块类型、成因及其大地构造启示[J].大地构造与成矿学, 2019, 43(4):700-714. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201904006

    WANG Guangzeng, LI Sanzhong, SUO Yanhui, et al. Transform-derived microplates:classification, mechanism and tectonic significance[J]. Geotectonica et Metallogenia, 2019, 43(4):700-714. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201904006
    [76]
    赵林涛, 李三忠, 索艳慧, 等.延生微地块:洋脊增生系统的复杂过程[J].大地构造与成矿学, 2019, 43(4):715-729. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201904007.htm

    ZHAO Lintao, LI Sanzhong, SUO Yanhui, et al. Propagation-derived micro-blocks:complex evolution of mid-ocean ridge accretion system[J]. Geotectonica et Metallogenia, 2019, 43(4):715-729. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DGYK201904007.htm
    [77]
    甄立冰, 李三忠, 郭玲莉, 等.延生型微板块成因机制模拟研究进展[J].大地构造与成矿学, 2019, 43(4):730-744. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201904008

    ZHEN Libing, LI Sanzhong, GUO Lingli, et al. Genetic mechanism of the propagation-derived microplate:a review[J]. Geotectonica et Metallogenia, 2019, 43(4):730-744. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201904008
    [78]
    周洁, 李三忠, 索艳慧, 等.碰生型微地块的分类及其形成机制[J].大地构造与成矿学, 2019, 43(4):795-823. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201904012

    ZHOU Jie, LI Sanzhong, SUO Yanhui, et al. Type and genetic mechanism of collision-derived micro-blocks[J]. Geotectonica et Metallogenia, 2019, 43(4):795-823. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201904012
    [79]
    李三忠, 索艳慧, 刘博, 等.微板块构造理论:全球洋内与陆缘微地块研究的启示[J].地学前缘, 2018, 25(5):323-356. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201805028.htm

    LI Sanzhong, SUO Yanhui, LIU Bo, et al. Microplate tectonics theory:insights from microblocks in the global oceans and continental margins[J]. Earth Science Frontiers, 2018, 25(5):323-356. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DXQY201805028.htm
    [80]
    HONZA E, FUJIOKA K. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous[J]. Tectonophysics, 2004, 384(1-4):23-53. doi: 10.1016/j.tecto.2004.02.006
    [81]
    SUO Y H, LI S Z, ZHAO S J, et al. Continental margin basins in East Asia:tectonic implications of the meso-cenozoic East China Sea Pull-apart basins[J]. Geological Journal, 2015, 50(2):139-156. doi: 10.1002/gj.2535
    [82]
    FLOWER M, TAMAKI K, HOANG N. Mantle extrusion: a model for dispersed volcanism and DUPAL-like asthenosphere in east Asia and the western Pacific[M]//FLOWER M F J, CHUNG S L, HO C H, et al. Mantle Dynamics and Plate Interactions in East Asia. Washington D. C.: Geodynamics Series, 1998: 67-86.
    [83]
    JOLIVET L, FACCENNA C, BECKER T, et al. Mantle flow and deforming continents:from India-Asia convergence to pacific subduction[J]. Tectonics, 2018, 37(9):2887-2914. doi: 10.1029/2018TC005036
    [84]
    LIU B, LI S Z, SUO Y H, et al. The geological nature and geodynamics of the Okinawa Trough, Western Pacific. Geological Journal, 2016, 51(S1):416-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/gj.2774
    [85]
    VAN ORMAN J, COCHRAN J R, WEISSEL J K, et al. Distribution of shortening between the Indian and Australian plates in the central Indian Ocean[J]. Earth and Planetary Science Letters, 1995, 133(1-2):35-46. doi: 10.1016/0012-821X(95)00061-G
    [86]
    REPLUMAZ A, CAPITANIO F A, GUILLOT S, et al. The coupling of Indian subduction and Asian continental tectonics. Gondwana Research, 2014, 26(2):608-626. doi: 10.1016/j.gr.2014.04.003
    [87]
    GIBBONS A D, ZAHIROVIC S, MVLLER R D, et al. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys[J]. Gondwana Research, 2015, 28(2):451-492. doi: 10.1016/j.gr.2015.01.001
    [88]
    ZAHIROVIC S, MVLLER R D, SETON M, et al. Tectonic speed limits from plate kinematic reconstructions[J]. Earth and Planetary Science Letters, 2015, 418:40-52. doi: 10.1016/j.epsl.2015.02.037
    [89]
    ZAHIROVIC S, MATTHEWS K J, FLAMENT N, et al. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic[J]. Earth-Science Reviews, 2016, 162:293-337. doi: 10.1016/j.earscirev.2016.09.005
    [90]
    BULL J M, SCRUTTON R A. Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere[J]. Nature, 1990, 344(6269):855-858. doi: 10.1038/344855a0
    [91]
    BULL J M, SCRUTTON R A. Seismic reflection images of intraplate deformation, central Indian Ocean, and their tectonic significance[J]. Journal of the Geological Society, 1992, 149(6):955-966. doi: 10.1144/gsjgs.149.6.0955
    [92]
    ROYER J Y, SANDWELL D T. Evolution of the eastern Indian Ocean since the Late Cretaceous-Constraints from Geosat altimetry[J]. Journal of Geophysical Rerearch:Soild Earth, 1989, 94(B10):13755-13782. doi: 10.1029/JB094iB10p13755
    [93]
    DELESCLUSE M, MONTÉSI L G J, CHAMOT-ROOKE N. Fault reactivation and selective abandonment in the oceanic lithosphere[J]. Geophysical Research Letters, 2008, 35(16):L16312. doi: 10.1029/2008GL035066
    [94]
    CHAMOT-ROOKE N, JESTIN F, DE VOOGD B, et al. Intraplate shortening in the central Indian Ocean determined from a 2100-km-long north-south deep seismic reflection profile[J]. Geology, 1993, 21(11):1043-1046. doi: 10.1130/0091-7613(1993)021<1043:ISITCI>2.3.CO;2
    [95]
    索艳慧, 李三忠, 戴黎明, 等.东亚及其大陆边缘新生代构造迁移与盆地演化[J].岩石学报, 2012, 28(8):2602-2618. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201208025

    SUO Yanhui, LI Sanzhong, DAI Liming, et al. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins[J]. Acta Petrologica Sinica, 2012, 28(8):2602-2618. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201208025
    [96]
    索艳慧, 李三忠, 曹现志, 等.中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J].地学前缘, 2017, 24(4):249-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201704023

    SUO Yanhui, LI Sanzhong, CAO Xianzhi, et al. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 2017, 24(4):249-267. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201704023
    [97]
    李三忠, 余珊, 赵淑娟, 等.东亚大陆边缘的板块重建与构造转换[J].海洋地质与第四纪地质, 2013, 33(3):65-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008

    LI Sanzhong, YU Shan, ZHAO Shujuan, et al. Tectonic transition and plate reconstructions of the East Asian Continental Magin[J]. Marine Geology & Quaternary Geology, 2013, 33(3):65-94. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008
    [98]
    SUO Y H, LI S Z, YU S, et al. Cenozoic Tectonic Jumping and implications for hydrocarbon accumulation in basins in the East Asia continental margin[J]. Journal of Asian Earth Sciences, 2014, 88:28-40. doi: 10.1016/j.jseaes.2014.02.019
    [99]
    张国伟, 李三忠.西太平洋-北印度洋及其洋陆过渡带:古今演变与论争[J].海洋地质与第四纪地质, 2017, 37(4):1-17. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201704001.htm

    ZHANG Guowei, LI Sanzhong. West Pacific and North Indian Oceans and their ocean-continent connection zones:evolution and debates[J]. Marine Geology & Quaternary Geology, 2017, 37(4):1-17. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201704001.htm
    [100]
    秦藴珊, 尹宏.西太平洋——我国深海科学研究的优先战略选区[J].地球科学进展, 2011, 26(3):245-248. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201103001

    QIN Yunshan, YIN Hong. Western Pacific:The strategic priority in China deep-sea research[J]. Advance in Earth Sciences, 2011, 26(3):245-248. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201103001
    [101]
    李三忠, 索艳慧, 刘博. 《海底构造系统(上、下)》[M].北京:科学出版社, 2018.

    LI Sanzhong, SUO Yanhui, LIU Bo. Submarine tectonic system (Volume 1-2)[M]. Beijing:Science Press, 2018. (in Chinese with English abstract)
  • 加载中

Catalog

    Figures(32)

    Article Metrics

    Article views (1156) PDF downloads(244) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return