留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光学影像相关性匹配技术的2023年土耳其MW7.8与MW7.5双强震地表同震变形研究

康文君 徐锡伟

康文君, 徐锡伟, 2024. 基于光学影像相关性匹配技术的2023年土耳其MW7.8与MW7.5双强震地表同震变形研究. 地质力学学报, 30 (2): 289-297. DOI: 10.12090/j.issn.1006-6616.2023144
引用本文: 康文君, 徐锡伟, 2024. 基于光学影像相关性匹配技术的2023年土耳其MW7.8与MW7.5双强震地表同震变形研究. 地质力学学报, 30 (2): 289-297. DOI: 10.12090/j.issn.1006-6616.2023144
KANG Wenjun, XU Xiwei, 2024. Study on coseismic surface deformation of the 2023 Turkey MW7.8 and MW7.5 double strong earthquakes using optical image correlation method. Journal of Geomechanics, 30 (2): 289-297. DOI: 10.12090/j.issn.1006-6616.2023144
Citation: KANG Wenjun, XU Xiwei, 2024. Study on coseismic surface deformation of the 2023 Turkey MW7.8 and MW7.5 double strong earthquakes using optical image correlation method. Journal of Geomechanics, 30 (2): 289-297. DOI: 10.12090/j.issn.1006-6616.2023144

基于光学影像相关性匹配技术的2023年土耳其MW7.8与MW7.5双强震地表同震变形研究

doi: 10.12090/j.issn.1006-6616.2023144
基金项目: 

国家自然科学基金青年基金项目 42302257

中央级公益性科研院所基本科研业务专项 ZDJ2021-06

国家自然科学基金地震联合基金项目 U1839204

详细信息
    作者简介:

    康文君(1988—),男,助理研究员,主要从事活动构造和构造地貌方面的研究。Email: kangwenjun002@foxmail.com

  • 中图分类号: P315

Study on coseismic surface deformation of the 2023 Turkey MW7.8 and MW7.5 double strong earthquakes using optical image correlation method

Funds: 

the Youth Fund of National Natural Science Foundation of China 42302257

the Fundamental Research Fund for the National Institute of Natural Hazards ZDJ2021-06

the Earthquake Joint Fund of National Natural Science Foundation of China U1839204

  • 摘要: 2023年2月6日在土耳其中南部卡赫拉曼马拉什省10个小时内连续发生MW7.8与MW7.5双强震,震源机制解表明两个地震均为走滑型地震。土耳其双强地震发生后,国内外学者利用野外测量、GNSS以及差分InSAR等方法开展了一系列地表同震变形研究,但由于所采用的技术手段限制,当前已有地表同震变形结果尚存在空间分辨率低、近断层处数据缺失等不足。为了弥补这些不足,研究利用哨兵2号光学影像数据,通过影像相关性匹配技术得到了土耳其双强震的东西向和南北向的地表同震变形场,并将这些地表变形转换成为沿着断层方向的左旋走滑位移。变形场结果显示两次地震地表破裂长度分别约280 km和约130 km,首先发生的MW 7.8地震的平均走滑位移量为4.2±1.66 m,最大走滑位移量6.9±0.81 m;随后发生的MW7.5地震的平均走滑位移量为4.9±2.45 m,最大走滑位移量为9.6±1.16 m。通过对比COSI-Corr方法和野外测量得到的水平位移,结果显示2种方法得到的最大水平位移相吻合,而COSI-Corr方法得到的平均位移略大于野外测量得到的水平位移,这是由COSI-Corr方法测量结果中包含了部分离断层弥散变形导致的。研究结论不仅可为断层面滑动反演模型提供变形数据和约束条件,同时可以加深对走滑断裂的破裂行为控制因素的理解。

     

  • 图  1  土耳其2023年2月6日MW7.8和MW7.5双强震发震构造

    CSZ—塞浦路斯俯冲带;DSF—死海断裂;EAF—东安纳托利亚断裂;NAF—北安纳托利亚断裂
    a—板块边界断裂带(黑线)和相对于稳定欧亚大陆的代表性GPS速度(白色箭头;据Pousse-Beltran et al., 2020修改,数据来自Kreemer et al.,2014);b—MW7.8和MW7.5双强震地表破裂带空间分布(2023年2月6日双震震源机制解数据来自美国地质调查局USGS:MW7.8数据网址https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executiveMW 7.5数据网址https://earthquake.usgs.gov/earthquakes/eventpage/us6000jlqa/executive;活动断层数据来自Şaroğlu et al., 1992)

    Figure  1.  Seismogenic faults of the MW7.8 and MW7.5 double strong earthquakes in Turkey on February 6, 2023

    (a) Plate boundary fault zones (black lines) and representative GPS velocities relative to stable Eurasia (white arrows); modified from Pousse-Beltran et al., 2020; data from Kreemer et al., 2014; CSZ-Cyprus Subduction Zone; DSF-Dead Sea Fault; EAF-East Anatolian Fault; NAF-North Anatolian Fault; (b) Spatial distribution of surface rupture zones for the MW7.8 and MW7.5 double strong earthquakes; source mechanism data for the double events on February 6, 2023 from the United States Geological Survey (USGS; MW7.8 https://earthquake.usgs.gov/earthquakes/eventpage/us6000jllz/executive and MW7.5, https://earthquake.usgs.gov/earthquakes/eventpage/us6000jlqa/executive); elevation data retrieved from SRTM 90 m from Jarvis et al., 2008, active fault data from Şaroğlu et al., 1992

    图  2  利用COSI-Corr提取断层同震变形的技术流程

    Figure  2.  Technical workflow for extracting fault coseismic deformation using COSI-Corr

    图  3  土耳其2023年2月6日MW7.8和MW7.5双强震地表同震变形场

    A和A’为MW7.8地震地表破裂的端点;B和B’为MW7.5地震地表破裂端点
    a—东西向变形场;b—南北向变形场

    Figure  3.  Surface coseismic deformation field for the double strong earthquakes of MW7.8 and MW7.5 in Turkey on February 6, 2023

    (a) East-West deformation field; (b) North-South deformation field
    A and A' are the endpoints of the surface rupture for the MW7.8 earthquake in Fig. 3, and B and B' are the endpoints of the surface rupture for the MW7.5 earthquake.

    图  4  土耳其2023年2月6日MW7.8和MW7.5双强震沿断层方向走滑位移分布

    A和A’为图 3中的MW7.8地震地表破裂的端点; B和B’为MW7.5地震地表破裂端点

    Figure  4.  Distribution of strike-slip displacement along the fault direction of double strong earthquakes of MW7.8 and MW7.5 in Turkey on February 6, 2023

    A and A' are the endpoints of the surface rupture for the MW7.8 earthquake in Fig. 3, and B and B' are the endpoints of the surface rupture for the MW7.5 earthquake.

    图  5  COSI-corr方法与传统野外测量方法的土耳其MW7.8强震沿断层方向走滑位移对比

    Figure  5.  Comparison of strike-slip displacement along the fault direction for the Turkey MW7.8 strong earthquake using COSI-Corr method and traditional field measurement method

    表  1  文章使用的哨兵2号光学影像信息

    Table  1.   Sentinel 2 optical image information used in this article

    震前影像编号 采集时间 波段 震后影像序号 采集时间 波段
    T37SBA-before 2023年1月20日 Band8 T37SBA-after 2023年2月9日 Band8
    T37SBB-before 2023年1月20日 Band8 T37SBB-after 2023年2月9日 Band8
    T37SBC-before 2023年1月10日 Band8 T37SBC-after 2023年2月9日 Band8
    T37SCA-before 2023年1月20日 Band8 T37SCA-after 2023年2月9日 Band8
    T37SCB-before 2023年1月20日 Band8 T37SCB-after 2023年2月9日 Band8
    T37SCC-before 2023年1月10日 Band8 T37SCC-after 2023年2月9日 Band8
    T37SDB-before 2023年1月27日 Band8 T37SDB-after 2023年2月9日 Band8
    T37SDC-before 2023年1月10日 Band8 T37SDC-after 2023年2月9日 Band8
    下载: 导出CSV
  • ANTOINE S L, KLINGER Y, DELORME A, et al., 2022. Off-fault deformation in regions of complex fault geometries: the 2013, Mw7.7, Baluchistan Rupture (Pakistan) [J]. Journal of Geophysical Research: Solid Earth, 127(11): e2022JB024480. doi: 10.1029/2022JB024480
    AYOUB F, LEPRINCE S, AVOUAC J P, 2009. Co-registration and correlation of aerial photographs for ground deformation measurements[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6): 551-560, doi: 10.1016/j.isprsjprs.2009.03.005.
    BALKAYA M, OZDEN S, AKYVZ H S, 2021. Morphometric and morphotectonic characteristics of sürgü and çardak faults (east anatolian fault zone)[J]. Journal of Advanced Research in Natural and Applied Sciences, 7(3): 375-392, doi: 10.28979/jarnas.939075.
    BARNHART W D, BRIGGS R W, REITMAN N G, et al., 2015. Evidence for slip partitioning and bimodal slip behavior on a single fault: surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake[J]. Earth and Planetary Science Letters, 420: 1-11, doi: 10.1016/j.epsl.2015.03.027.
    BARNHART W D, GOLD R D, HOLLINGSWORTH J, 2020. Localized fault-zone dilatancy and surface inelasticity of the 2019 Ridgecrest earthquakes[J]. Nature Geoscience, 13(10): 699-704, doi: 10.1038/s41561-020-0628-8.
    CHOROWICZ J, LUXEY P, LYBERIS N, et al., 1994. The Maras Triple Junction (southern Turkey) based on digital elevation model and satellite imagery interpretation[J]. Journal of Geophysical Research: Solid Earth, 99(B10): 20225-20242, doi: 10.1029/94JB00321.
    DUMAN T Y, EMRE Ö, 2013. The East Anatolian Fault: geometry, segmentation and jog characteristics[J]. Geological Society, London, Special Publications, 372(1): 495-529, doi: 10.1144/SP372.14.
    Feng S T, Li J, Li G R, et al., 2023. Preliminary horizontal co-seismic displacements caused by the 2023 Mw 7.8 and Mw 7.5 Türkiye earthquakes estimated using high-rate GPS observations[J]. Acta Geophys, doi: 10.1007/s11600-023-01168-4.
    GOLD R D, REITMAN N G, BRIGGS R W, et al., 2015. On- and off-fault deformation associated with the September 2013 Mw 7.7 Balochistan earthquake: implications for geologic slip rate measurements[J]. Tectonophysics, 660: 65-78, doi: 10.1016/j.tecto.2015.08.019.
    GÜVERCIN S E, KARABULUT H, KONCA A Ö, et al., 2022. Active seismotectonics of the east anatolian fault[J]. Geophysical Journal International, 230(1): 50-69, doi: 10.1093/gji/ggac045.
    HE L J, FENG G C, FENG Z X, et al., 2019. Coseismic displacements of 2016 MW7.8 Kaikoura, New Zealand earthquake, using Sentinel-2 optical images[J]. Acta Geodaetica et Cartographica Sinica, 48(3): 339-351, doi: 10.11947/j.AGCS.2019.20170671. (in Chinese with English abstract)
    JACKSON J, 2010. N. Ambraseys 2009. Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press. xx + 947pp. Price £120.00, US $210.00 (hard covers). ISBN 978 0 521 87292 8[J]. Geological Magazine, 147(6): 987-988, doi: 10.1017/S0016756810000452.
    JIA Z, JIN Z Y, MARCHANDON M, et al., 2023. The complex dynamics of the 2023 Kahramanmaraş, Turkey, Mw7.8-7.7 earthquake doublet[J]. Science, 381(6661): 985-990. doi: 10.1126/science.adi0685
    KARABACAK V, ÖZKAYMAK Ç, SÖZBILIR H, et al., 2023. The 2023 Pazarcık (Kahramanmaraş, Türkiye) Earthquake (Mw: 7.7): implications for surface rupture dynamics along the East Anatolian Fault Zone[J/OL]. Journal of the Geological Society, 180(3): 1-14. https://doi.org/10.1144/ips2023-020.
    KREEMER C, BLEWITT G, KLEIN E C, 2014. A geodetic plate motion and Global Strain Rate Model[J]. Geochemistry, Geophysics, Geosystems, 15(10): 3849-3889, doi: 10.1002/2014GC005407.
    LI C L, LI T, SHAN X J, et al, 2023. Extremely large off-fault deformation during the 2021 MW 7.4 Maduo, Tibetan Plateau, Earthquake[J]. Seismological Research Letters, 94(1): 39-51. doi: 10.1785/0220220139
    LIU C L, LAY T, WANG R J, et al, 2023. Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye[J]. Nature Communications, 14(1): 5564. doi: 10.1038/s41467-023-41404-5
    MAI P M, ASPIOTIS T, AQUIB T A, et al., 2023. The destructive earthquake doublet of 6 February 2023 in South-Central türkiye and Northwestern Syria: initial observations and analyses[J]. The Seismic Record, 3(2): 105-115. doi: 10.1785/0320230007
    MCKENZIE D, 1976. The east anatolian fault: a major structure in eastern turkey[J]. Earth and Planetary Science Letters, 29(1): 189-193, doi: 10.1016/0012-821X(76)90038-8.
    MENG J H, KUSKY T, MOONEY W D, et al, 2024. Surface deformations of the 6 February 2023 earthquake sequence, eastern Türkiye[J]. Science, 383(6680): 298-305. doi: 10.1126/science.adj3770
    MILLINER C, DONNELLAN A, 2020. Using daily observations from planet labs satellite imagery to separate the surface deformation between the 4 July MW6.4 foreshock and 5 July MW7.1 mainshock during the 2019 ridgecrest earthquake sequence[J]. Seismological Research Letters, 91(4): 1986-1997, doi: 10.1785/0220190271.
    MILLINER C W D, DOLAN J F, HOLLINGSWORTH J, et al., 2015. Quantifying near-field and off-fault deformation patterns of the 1992 MW 7.3 Landers earthquake[J]. Geochemistry, Geophysics, Geosystems, 16(5): 1577-1598, doi: 10.1002/2014GC005693.
    MILLINER C W D, DOLAN J F, HOLLINGSWORTH J, et al., 2016. Comparison of coseismic near-field and off-fault surface deformation patterns of the 1992 Mw 7.3 landers and 1999 Mw7.1 hector mine earthquakes: implications for controls on the distribution of surface strain[J]. Geophysical Research Letters, 43(19): 10115-10124, doi: 10.1002/2016gl069841.
    ÖZKAN A, SOLAK H İ, TIRYAKIOǦLU İ, et al., 2023. Characterization of the co-seismic pattern and slip distribution of the February 06, 2023, Kahramanmaraş (Turkey) earthquakes (Mw 7.7 and Mw 7.6) with a dense GNSS network[J]. Tectonophysics, 866: 230041. doi: 10.1016/j.tecto.2023.230041
    POUSSE-BELTRAN L, NISSEN E, BERGMAN E A, et al., 2020. The 2020 MW 6.8 Elazğ (Turkey) earthquake reveals rupture behavior of the East Anatolian fault[J]. Geophysical Research Letters, 47(13): e2020GL088136, doi: 10.1029/2020GL088136.
    ŞAROǦLU F, EMRE Ö, KUŞÇU İ, 1992. Türkiye diri fay haritası[M]. Ankara: MTA Genel Müdürlüğü.
    SCHÖN SCHOENJ H, 2015. Physical properties of rocks-fundamentals and principles of petrophysics[M]. 2nd ed. Amsterdam: Elsevier.
    TONG X P, WANG Y Z, CHEN S, 2023. Coseismic deformation of the 2023 türkiye earthquake doublet from sentinel-1 InSAR and implications for earthquake hazard[J]. Seismological Research Letters, 95(2A): 574-583, doi: 10.1785/0220230282.
    VALLAGE A, KLINGER Y, GRANDIN R, et al., 2015. Inelastic surface deformation during the 2013 Mw 7.7 Balochistan, Pakistan, earthquake[J]. Geology, 2015, 43(12): 1079-1082.
    WANG L Y, ZOU A J, XU G Y, 2021. Coseismic deformation of 2019 Ridgecrest earthquake sequence obtained by optical images correlation[J]. Engineering of Surveying and Mapping, 30(4): 1-8, 13, doi: 10.19349/j.cnki.issn1006-7949.2021.04.001. (in Chinese with English abstract)
    WANG M C, HE Z Q, CHEN T, 2022. Recent coulomb stress evolution in the east anatolian fault zone and its triggering relationship with the 2020 Elaziĝ MW6.8 earthquake[J]. Journal of Geodesy and Geodynamics, 42(5): 526-532. (in Chinese with English abstract)
    ZINKE R, HOLLINGSWORTH J, DOLAN J F, 2014. Surface slip and off-fault deformation patterns in the 2013 MW 7.7 Balochistan, Pakistan earthquake: implications for controls on the distribution of near-surface coseismic slip[J]. Geochemistry, Geophysics, Geosystems, 15(12): 5034-5050. doi: 10.1002/2014GC005538
    贺礼家, 冯光财, 冯志雄, 等, 2019. 哨兵-2号光学影像地表形变监测: 以2016年Mw7.8新西兰凯库拉地震为例[J]. 测绘学报, 48(3): 339-351, doi: 10.11947/j.AGCS.2019.20170671.
    王乐洋, 邹阿健, 许光煜, 2021. 利用光学影像相关获取2019年Ridgecrest地震序列同震形变[J]. 测绘工程, 30(4): 1-8, 13, doi: 10.19349/j.cnki.issn1006-7949.2021.04.001.
    王茗册, 何仲秋, 陈庭, 2022. 东安纳托利亚断裂带近期库仑应力演化及与2020年埃拉泽Mw6.8地震的触发关系[J]. 大地测量与地球动力学, 42(5): 526-532, doi: 10.14075/j.jgg.2022.05.016.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2024-03-24
  • 录用日期:  2024-03-24
  • 刊出日期:  2024-04-11

目录

    /

    返回文章
    返回