留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渤海南部明化镇组下段源−汇体系及其对大面积岩性油气藏的控制作用

徐长贵 杜晓峰 庞小军 王启明 潘文静

徐长贵,杜晓峰,庞小军,等,2022. 渤海南部明化镇组下段源−汇体系及其对大面积岩性油气藏的控制作用[J]. 地质力学学报,28(5):728−742 doi: 10.12090/j.issn.1006-6616.20222813
引用本文: 徐长贵,杜晓峰,庞小军,等,2022. 渤海南部明化镇组下段源−汇体系及其对大面积岩性油气藏的控制作用[J]. 地质力学学报,28(5):728−742 doi: 10.12090/j.issn.1006-6616.20222813
XU C G,DU X F,PANG X J,et al.,2022. The source-sink system and its control on large-area lithologic reservoirs of the lower Minghuazhen Formation in the southern Bohai Sea[J]. Journal of Geomechanics,28(5):728−742 doi: 10.12090/j.issn.1006-6616.20222813
Citation: XU C G,DU X F,PANG X J,et al.,2022. The source-sink system and its control on large-area lithologic reservoirs of the lower Minghuazhen Formation in the southern Bohai Sea[J]. Journal of Geomechanics,28(5):728−742 doi: 10.12090/j.issn.1006-6616.20222813

渤海南部明化镇组下段源−汇体系及其对大面积岩性油气藏的控制作用

doi: 10.12090/j.issn.1006-6616.20222813
基金项目: “十三五”国家科技重大专项 (2016ZX05024-003)
详细信息
    作者简介:

    徐长贵(1971—),男,博士,教授级高级工程师,主要从事石油地质与综合勘探研究。E-mail: xuchg@cnooc.com.cn

  • 中图分类号: P618.13

The source-sink system and its control on large-area lithologic reservoirs of the lower Minghuazhen Formation in the southern Bohai Sea

Funds: This research is financially supported by the Major Project of National Science and Technology (Grant 2016ZX05024-003)
  • 摘要: 近年来,在渤海南部新近系钻遇了大量大面积砂体,并发现了多个亿吨级油田,表明明化镇组下段勘探潜力巨大。该类砂体发育形成源−汇要素不清,严重制约了明下段的岩性油气藏勘探。文章利用古生物、重矿物、地震、钻井等资料,探讨了渤海南部浅层明下段源−汇体系及其对大面积岩性油气藏的控制。结果表明:渤海南部明下段沉积期发育多个方向的源−汇体系,其中,燕山−辽西隆起方向距离研究区最远,辽东隆起次之,鲁西隆起和胶东隆起较近,鲁西隆起和辽东隆起对研究区源−汇系统影响较大,燕山−辽西隆起对源−汇系统影响较弱;研究区明下段沉积期主要发育河流、河湖交互和湖泊这三种沉积体系,其中,河湖交互和湖泊浅水三角洲形成的砂体面积较大;研究区明下段沉积期具备形成大面积砂体的有利源−汇条件,其中,温带−亚热带气候、充足的降雨量、发达的古水系、长英质变质岩和岩浆岩母岩、湖泊范围频繁的扩大和缩小有利于大面积砂体的发育;河道砂−席状砂−河道砂的连通导致研究区明下段发育大面积的岩性圈闭,与单独的河道砂相比,河湖交互和浅水三角洲具有形成大面积岩性油气藏的潜力。该认识可为渤海海域新近系大型油气藏的勘探提供帮助。

     

  • 图  1  渤海海域大地构造位置及地层综合柱状图

    a—大地构造位置;b—地层综合柱状图

    Figure  1.  Geotectonic position and stratigraphic comprehensive histogram of the Bohai Sea

    (a) Geotectonic position; (b) Stratigraphic comprehensive histogram

    图  2  渤海南部新近纪古气候分析

    Figure  2.  Paleoclimate analysis of the southern Bohai Sea of Neogene

    图  3  渤海南部地区物源分布及主要水系方向

    Figure  3.  Source distribution and directions of the of main water systems in the southern Bohai Sea

    图  4  渤海南部地区明下段沉积期古地貌与古水系叠合图

    Figure  4.  Superimposition of paleo-geomorphology and paleo-water system in the lower Minghuazhen Formation in the southern Bohai Sea

    图  5  渤海南部地区明下段重矿物相对百分含量对比

    Figure  5.  Comparison of the relative percentages of heavy minerals in the lower member of the Minghuazhen Formation in the southern Bohai Sea

    图  6  渤海南部地区明下段下部地震剖面特征(SB02层拉平;地震剖面位置见图5

    Figure  6.  Seismic profile characteristics of the lower lower part of the lower member of the Minghuazhen Formation in the southern Bohai Sea (The SB02 layer is flattened. See Fig. 5 for the location of the seismic section)

    图  7  渤海南部地区明下段不同沉积期古地貌特征

    a—明下段下部古地貌;b—明下段上部古地貌

    Figure  7.  Paleo-geomorphic characteristics of the lower member of the Minghuazhen Formation in different depositional stages in the southern Bohai Sea

    (a) Paleo-geomorphic characteristics of the lower part of the lower member of the Minghuazhen Formation; (b) Paleo-geomorphic charalteristics of the upper part of the lower member of the Minghuazhen Formation

    图  8  河流体系—河湖交互体系—湖泊体系沉积特征对比分图

    Figure  8.  Comparison of sedimentary characteristics of river system, river–lake interaction system and lake system

    图  9  渤海南部地区明下段沉积体系展布图

    a—沉积早期;b—沉积晚期

    Figure  9.  Distribution map of the sedimentary systems in the early and late sedimentation of the lower Minghuazhen Formation in the southern Bohai Sea

    (a) Early sedimentation; (b) Late sedimentation

    图  10  渤海南部地区明下段沉积期源−汇体系模式图

    Figure  10.  Model diagram of the source–sink system in the lower member of the Minghuazhen Formation in the southern Bohai Sea

    图  11  渤海南部地区垦利6-1构造明下段砂体和油层连续分布特征

    Figure  11.  Continuous distribution characteristics of the sand bodies and oil layers in the lower member of the Minghuazhen Formation of KL 6-1 structure in the southern Bohai Sea

    图  12  渤海南部地区明下段垦利6-1构造岩性油藏成藏模式和含油面积分布

    a—成藏模式;b—含油面积分布

    Figure  12.  Accumulation model and oil-bearing area distribution of the KL 6-1 structural lithologic reservoir in the lower member of the Minghuazhen Formation in the southern Bohai Sea

    (a) Accumulation model; (b) Oil-bearing area distribution

  • CAO Y C, XU Q S, WANG J, 2018. Progress in “Source-to-Sink” system research[J]. Earth Science Frontiers, 25(4): 116-131. (in Chinese with English abstract) doi: 10.13745/j.esf.sf.2018.5.30
    CARACCIOLO L, 2020. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: review, application and future development[J]. Earth-Science Reviews, 209: 103226. doi: 10.1016/j.earscirev.2020.103226
    CHEN J, ZHANG W Y, JIANG Z X, et al. , 2020. Characteristics and control factors of the source-to-sink system in the Erlangjian-Heimahe area on the south bank of Qinghai lake[J]. Acta Petrolei Sinica, 41(7): 821-834. (in Chinese with English abstract)
    CHEN R T, WANG Q B, WANG F L, et al. , 2017. Application of heavy minerals multivariate statistic analysis to provenance studies: a case of Huanghekou depression[J]. Xinjiang Oil & Gas, 13(2): 1-5, 107. (in Chinese with English abstract)
    DU X F, PANG X J, WANG Q B, et al. , 2017. Restoration of the Paleo-provenance of the Es12 in the eastern of Shijiutuo uplift and its control on reservoir[J]. Earth Science, 42(11): 1897-1909. (in Chinese with English abstract)
    DUAN Y J, DONG Y X, JIANG X Y, et al. , 2019. Sedimentary characteristics of the meandering river and recognition of abandoned river in the lower reaches of Minghua town in Raoyang[J]. Bulletin of Science and Technology, 35(4): 21-26. (in Chinese with English abstract)
    GRAFTON R Q, PITTOCK J, DAVIS R, et al. , 2013. Global insights into water resources, climate change and governance[J]. Nature Climate Change, 3(4): 315-321. doi: 10.1038/nclimate1746
    HAO J, ZHANG H H, LI C R, et al. , 2021. Petroleum exploration history and enlightenment in Bohai sea[J]. Xinjiang Petroleum Geology, 42(3): 328-336. (in Chinese with English abstract)
    HU H W, LI H Y, YU H B, et al. , 2020. Quantitative analysis of source-to-sink system controls on sand-body distribution of the Paleogene in Chengbei low uplift and surrounding areas, Bohai Bay Basin[J]. Journal of Palaeogeography (Chinese Edition), 22(2): 266-277. (in Chinese with English abstract)
    KANG H L, LIN C S, NIU C M, 2021. Ancient landform of the Dongying formation in the Shadongnan structural zone, western Bohai Sea area and its control on the sedimentation[J]. Journal of Geomechanics, 27(1): 19-30. (in Chinese with English abstract)
    LI L N, ZHAO Z G, CUI Y C, et al. , 2022. “Source-to-sink” analysis of turbidite deposits in the upper cretaceous-Eocene Rajang group in southern South China Sea[J]. Journal of Palaeogeography (Chinese Edition), 24(1): 61-72. (in Chinese with English abstract)
    LI Y T, WANG W Q, WANG G, et al. , 2019. Neotectonism and its control on hydrocarbon accumulation in Huanghua depression of the Bohai Bay Basin[J]. Journal of Northeast Petroleum University, 43(6): 94-104. (in Chinese with English abstract)
    LIU L, STOCKLI D F, LAWTON T F, et al. , 2022. Reconstructing source-to-sink systems from detrital zircon core and rim ages[J]. Geology, 50(6): 691-696. doi: 10.1130/G49904.1
    LYSTER S J, WHITTAKER A C, HAMPSON G J, et al. , 2021. Reconstructing the morphologies and hydrodynamics of ancient rivers from source to sink: Cretaceous Western Interior Basin, Utah, USA[J]. Sedimentology, 68(6): 2854-2886. doi: 10.1111/sed.12877
    NIU B, ZHAO J H, FU P, et al. , 2019. Trend judgment of abandoned channels and fine architecture characterization in meandering river reservoirs: a case study of Neogene Minhuazhen formation NmⅢ2 layer in Shijiutuo bulge, Chengning uplift, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 46(5): 891-901. (in Chinese with English abstract)
    SEPTAMA E, BENTLEY SR S J, 2017. Source-to-sink sediment delivery in the Gulf of Papua from scanning electron microscopy and mineral liberation analysis–aided provenance analysis of deep-sea turbidite sands[J]. AAPG Bulletin, 101(6): 907-936. doi: 10.1306/09021615184
    SHANG X F, LI M, LIU J L, et al. , 2022. Source-sink system based sand body distribution prediction and 3D geological modeling: a case study of the 2nd Member of Xujiahe Formation in Xinchang structural belt of Western Sichuan Depression, Sichuan Basin[J]. Natural Gas Industry, 42(1): 62-72. (in Chinese with English abstract)
    SHI X Q, 2018. Evolution of global typical river runoff under climate change[D]. Beijing: China Institute of Water Resources and Hydropower Research. (in Chinese with English abstract)
    SINCLAIR H D, STUART F M, MUDD S M, et al. , 2019. Detrital cosmogenic 21Ne records decoupling of source-to-sink signals by sediment storage and recycling in Miocene to present rivers of the Great Plains, Nebraska, USA[J]. Geology, 47(1): 3-6. doi: 10.1130/G45391.1
    SUN Y, ZHAO D, YU L M, et al. , 2015. Sandbody distribution and sedimentary model in shallow lacustrine fluvial-dominated delta front: a case study from Putaohua oil layer of Yongle area in Songliao basin[J]. Acta Sedimentologica Sinica, 33(3): 439-447. (in Chinese with English abstract)
    TAN M X, ZHU X M, ZHANG Z L, et al. , 2020a. Fluvial sequence pattern and its response of geomorphy in depression phase of rift basin: a case study of the lower member of Neogene Minghuazhen Formation in Shaleitian Uplift area, Bohai Bay Basin[J]. Journal of Palaeogeography (Chinese Edition), 22(3): 428-439. (in Chinese with English abstract)
    TAN M X, ZHU X M, ZHANG Z L, et al. , 2020b. Summary of sedimentological issues and fundamental approaches in terms of ancient “Source-to-Sink” systems[J]. Oil & Gas Geology, 41(5): 1107-1118. (in Chinese with English abstract)
    TIAN P P, LIN C Y, ZHANG X G, et al. , 2018. Flow characteristics and remaining oil distribution of flow unit in fluvial reservoir: a case study of fluvial Minghuazhen formation of Yangerzhuang oilfield in Neogene Huanghua depression[J]. Journal of Northeast Petroleum University, 42(2): 11-22. (in Chinese with English abstract)
    WANG J G, JIANG C J, CHANG S, et al. , 2017. Structural trend surface conversion method for micro-amplitude paleotopographic restoration of cratonic basins[J]. Acta Petrolei Sinica, 38(1): 77-83, 104. (in Chinese with English abstract)
    WANG K, ZHAI S K, 2020. Geochemical methods for identification of sedimentary provenance[J]. Marine Sciences, 44(12): 132-143. (in Chinese with English abstract)
    WANG L L, NIU C M, YANG H F, et al. , 2022. Evolution of channel patterns and its geological significance for oil and gas exploration in the Lower Member of Minghuazhen Formation in Laibei low uplift, Bohai Bay Basin[J]. Acta Petrolei Sinica, 43(3): 364-375. (in Chinese with English abstract)
    XU C G, DU X F, XU W, et al. , 2017. New advances of the "Source-to-Sink" system research in sedimentary basin[J]. Oil & Gas Geology, 38(1): 1-11. (in Chinese with English abstract)
    XU C G, YANG H F, WANG D Y, et al. , 2021. Formation conditions of Neogene large-scale high-abundance lithologic reservoir in the Laibei low uplift, Bohai Sea, East China[J]. Petroleum Exploration and Development, 48(1): 12-25. (in Chinese with English abstract)
    XU M M, WEI X C, YANG R, et al. , 2021. Research progress of provenance tracing method for heavy mineral analysis[J]. Advances in Earth Science, 36(2): 154-171. (in Chinese with English abstract)
    YANG C, ZHU H T, NIU C M, et al. , 2021. Characteristics and models of shallow-water environmental river-lake interaction in continental basins[J]. Earth Science, 46(5): 1771-1782. (in Chinese with English abstract)
    YANG R C, LI J B, FAN A P, et al. , 2013. Research progress and development tendency of provenance analysis on terrigenous sedimentary rocks[J]. Acta Sedimentologica Sinica, 31(1): 99-107. (in Chinese with English abstract)
    ZENG Z W, ZHU H T, 2022. Modern Dryland source-to-sink system segments and coupling relationships from digital elevation model analysis: a case study from the Mongolian Altai[J]. Remote Sensing, 14(5): 1202. doi: 10.3390/rs14051202
    ZHANG X Q, WU Z P, ZHOU X H, et al. , 2017. Cenozoic tectonic characteristics and evolution of the southern Bohai Sea[J]. Geotectonica et Metallogenia, 41(1): 50-60. (in Chinese with English abstract)
    ZHAO H Q, ZHANG J M, LI S B, et al. , 2017. Sedimentary characteristics and evolution models of lower part of Minghuazhen Formation in Neogene system in oilfield A, Bohai Bay Basin[J]. Journal of Jilin University (Earth Science Edition), 47(4): 1021-1029, 1046. (in Chinese with English abstract)
    ZHU H T, XU C G, ZHU X M, et al. , 2017. Advances of the source-to-sink units and coupling model research in continental basin[J]. Earth Science, 42(11): 1851-1870. (in Chinese with English abstract)
    操应长, 徐琦松, 王健, 2018. 沉积盆地“源-汇”系统研究进展[J]. 地学前缘, 25(4): 116-131. doi: 10.13745/j.esf.sf.2018.5.30
    陈骥, 张万益, 姜在兴, 等, 2020. 青海湖南岸二郎剑—黑马河地区源-汇体系特征及控制因素[J]. 石油学报, 41(7): 821-834. doi: 10.7623/syxb202007004
    陈容涛, 王清斌, 王飞龙, 等, 2017. 重矿物多元统计分析在物源研究中的应用: 以黄河口凹陷为例[J]. 新疆石油天然气, 13(2): 1-5, 107.
    杜晓峰, 庞小军, 王清斌, 等, 2017. 石臼坨凸起东段围区沙一二段古物源恢复及其对储层的控制[J]. 地球科学, 42(11): 1897-1909.
    段雅君, 董运晓, 姜新雨, 等, 2019. 饶阳凹陷明化镇组下段曲流河沉积特征及废弃河道识别[J]. 科技通报, 35(4): 21-26. doi: 10.13774/j.cnki.kjtb.2019.04.005
    郝婧, 张厚和, 李春荣, 等, 2021. 渤海海域油气勘探历程与启示[J]. 新疆石油地质, 42(3): 328-336.
    胡贺伟, 李慧勇, 于海波, 等, 2020. 渤海湾盆地埕北低凸起及围区古近系“源-汇”系统控砂原理定量分析[J]. 古地理学报, 22(2): 266-277. doi: 10.7605/gdlxb.2020.10.238
    康海亮, 林畅松, 牛成民, 2021. 渤海西部沙东南构造带东营组古地貌特征及对沉积的控制作用[J]. 地质力学学报, 27(1): 19-30. doi: 10.12090/j.issn.1006-6616.2021.27.01.003
    李莉妮, 赵志刚, 崔宇驰, 等, 2022. 南海南部上白垩统—始新统Rajang群浊流沉积物源-汇对比分析[J]. 古地理学报, 24(1): 61-72. doi: 10.7605/gdlxb.2022.01.005
    李岳桐, 王文庆, 王刚, 等, 2019. 渤海湾盆地黄骅坳陷新构造运动特征及其控藏作用[J]. 东北石油大学学报, 43(6): 94-104.
    牛博, 赵家宏, 付平, 等, 2019. 曲流河废弃河道走向判定与单砂体构型表征: 以渤海湾盆地埕宁隆起石臼坨凸起西部新近系明化镇组下段为例[J]. 石油勘探与开发, 46(5): 891-901. doi: 10.11698/PED.2019.05.08
    商晓飞, 李蒙, 刘君龙, 等, 2022. 基于源-汇系统的砂体分布预测与三维地质建模: 以四川盆地川西坳陷新场构造带须二段为例[J]. 天然气工业, 42(1): 62-72.
    石晓晴, 2018. 气候变化背景下全球典型江河径流演变规律[D]. 北京: 中国水利水电科学研究院.
    孙雨, 赵丹, 于利民, 等, 2015. 浅水湖盆河控三角洲前缘砂体分布特征与沉积模式探讨: 以松辽盆地北部永乐地区葡萄花油层为例[J]. 沉积学报, 33(3): 439-447.
    谈明轩, 朱筱敏, 张自力, 等, 2020a. 断陷盆地拗陷期河流层序样式及其地貌响应: 以渤海湾盆地沙垒田凸起区新近系明化镇组下段为例[J]. 古地理学报, 22(3): 428-439.
    谈明轩, 朱筱敏, 张自力, 等, 2020b. 古“源-汇”系统沉积学问题及基本研究方法简述[J]. 石油与天然气地质, 41(5): 1107-1118.
    田盼盼, 林承焰, 张宪国, 等, 2018. 河流相流动单元渗流特征及剩余油分布: 以黄骅坳陷羊二庄油田新近系明化镇组河流相储层为例[J]. 东北石油大学学报, 42(2): 11-22. doi: 10.3969/j.issn.2095-4107.2018.02.002
    王建国, 蒋传杰, 常森, 等, 2017. 克拉通盆地微古地貌恢复的构造趋势面转换法[J]. 石油学报, 38(1): 77-83, 104. doi: 10.7623/syxb201701008
    王轲, 翟世奎, 2020. 沉积物源判别的地球化学方法[J]. 海洋科学, 44(12): 132-143.
    王利良, 牛成民, 杨海风, 等, 2022. 渤海湾盆地莱北低凸起明化镇组下段河道类型演化及其油气地质意义[J]. 石油学报, 43(3): 364-375.
    徐长贵, 杜晓峰, 徐伟, 等, 2017. 沉积盆地“源-汇”系统研究新进展[J]. 石油与天然气地质, 38(1): 1-11. doi: 10.11743/ogg20170101
    徐长贵, 杨海风, 王德英, 等, 2021. 渤海海域莱北低凸起新近系大面积高丰度岩性油藏形成条件[J]. 石油勘探与开发, 48(1): 12-25. doi: 10.11698/PED.2021.01.02
    许苗苗, 魏晓椿, 杨蓉, 等, 2021. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 36(2): 154-171. doi: 10.11867/j.issn.1001-8166.2021.021
    杨超, 朱红涛, 牛成民, 等, 2021. 陆相盆地浅水背景河湖交互特征及其模式[J]. 地球科学, 46(5): 1771-1782.
    杨仁超, 李进步, 樊爱萍, 等, 2013. 陆源沉积岩物源分析研究进展与发展趋势[J]. 沉积学报, 31(1): 99-107. doi: 10.14027/j.cnki.cjxb.2013.01.018
    张晓庆, 吴智平, 周心怀, 等, 2017. 渤海南部新生代构造发育与演化特征[J]. 大地构造与成矿学, 41(1): 50-60. doi: 10.16539/j.ddgzyckx.2017.01.004
    赵汉卿, 张建民, 李栓豹, 等, 2017. 渤海湾盆地A油田新近系明下段沉积特征及演化模式[J]. 吉林大学学报(地球科学版), 47(4): 1021-1029, 1046. doi: 10.13278/j.cnki.jjuese.201704105
    朱红涛, 徐长贵, 朱筱敏, 等, 2017. 陆相盆地源-汇系统要素耦合研究进展[J]. 地球科学, 42(11): 1851-1870.
  • 加载中
图(12)
计量
  • 文章访问数:  469
  • HTML全文浏览量:  135
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-06-29
  • 预出版日期:  2022-11-02

目录

    /

    返回文章
    返回